Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | IMSEAR | ID: sea-148747

RESUMO

Background: Formocresol remains to be the preferred medicament in pulpotomy, despite the concerns regarding tissue devitalization and systemic toxicity. Several materials were used as alternatives, but none proved significantly advantageous. Of recent, calcium phosphate cement (CPC) has been projected as an ideal pulpotomy material considering its tissue compatibility and dentinogenic properties. This study explores the suitability of a CPC formulation for pulpotomy, in comparison with formocresol. Materials and Methods: This comparative case study included 10 children (8-12 age group) having a pair of non-carious primary canines (both maxillary and mandibular) posted for extraction. Pulpotomy was performed with CPC in the right canines and formocresol in the left and sealed with IRM® (Dentsply). The teeth were extracted at 70 ± 5 days and sectioned and stained for the histopathological evaluation. Parameters such as pulpal inflammation, tissue reaction to material, dentine bridge formation, location of dentine bridge, quality of dentine formation in bridge, and connective tissue in bridge etc. were evaluated. Results: The histological assessment after 70 days showed no statistically significant difference between the two groups in any of the parameters. However, CPC gave more favorable results in pulpal inflammation, with a lower score of 1.6 against 2.6 for formocresol. CPC samples showed better formation of dentine bridge in quantity and quality. The mean scores for CPC for the extent of dentine bridge formation, quality of dentine bridge and connective tissue in the bridge, were 2.0, 1.4, and 1.2 respectively, whereas the corresponding values for formocresol were 0.8, 0.2, and 1.0. Conclusion: CPC is more compatible to pulp tissues than formocresol and it shows good healing potential. CPC is capable of inducing dentine formation without an area of necrosis.

2.
Artigo em Inglês | IMSEAR | ID: sea-139777

RESUMO

Background : Calcium phosphate cements (CPC) are apparently good candidates for periodontal treatment by virtue of their biocompatibility, mouldability and osteoconductivity. However, the clinical efficacy in this regard has not been established. This study is aimed at the evaluation of the efficacy of a formulation of CPC in healing human periodontal intraosseous defects in comparison with hydroxyapatite ceramic granules. Materials and Methods : In this clinical study, 60 patients with periodontal defects were divided into 2 test groups and 1 control group. The defect sites in the test groups were repaired with CPC and hydroxyapatite ceramic granules (HAG). Debridement alone was given in the control group. The progress was assessed at 3, 6, 9 and 12 months observation intervals through soft tissue parameters (probing depth, attachment level and gingival recession). Results: CPC showed significantly better outcome. Probing depth reduction values of CPC, HAG and Control at 6 months were 5.40 ± 1.43, 3.75 ± 1.71 and 2.90 ± 1.48, and those at 12 months were 6.20 ± 1.80, 4.5 ± 1.91 and 2.95 ± 1.73. Clinical attachment gain values of CPC, HAG and Control at 6 months were 5.15 ± 1.50, 3.45 ± 1.96 and 2.25 ± 1.52, and those at 12 months were 5.80 ± 2.02, 3.55 ± 2.06 and 2.30 ± 1.78, In both cases the P value was <0.001 showing high significance. The gingival recession over 12 months, for the CPC group is lesser than that in the HAG group and the value for the control group is marginally higher than both. Soft-tissue measurements were appended by postoperative radiographs and surgical re-entry in selected cases. Conclusions: Calcium phosphate cement is found to be significantly better than hydroxyapatite ceramic granules. The material could be considered as a "barrier-graft".


Assuntos
Implantes Absorvíveis , Adulto , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/cirurgia , Materiais Biocompatíveis/uso terapêutico , Cimentos Ósseos/uso terapêutico , Substitutos Ósseos/uso terapêutico , Fosfatos de Cálcio/uso terapêutico , Cerâmica/uso terapêutico , Desbridamento , Raspagem Dentária , Durapatita/uso terapêutico , Feminino , Seguimentos , Retração Gengival/cirurgia , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Osteogênese/fisiologia , Perda da Inserção Periodontal/cirurgia , Bolsa Periodontal/cirurgia , Periodontite/cirurgia , Curetagem Subgengival , Retalhos Cirúrgicos , Resultado do Tratamento , Adulto Jovem
3.
Artigo em Inglês | IMSEAR | ID: sea-51812

RESUMO

Calcium phosphate cements (CPC) are self setting and biocompatible bone substitute materials with potential applications in dentistry. However, its clinical use has been challenged by poor rheological properties. A novel formulation of CPC has been developed, which gives a fully injectable and cohesive paste. This work investigates the suitability of the new "fully injectable calcium phosphate cement" (FI-CPC) for dental applications. The cementing properties, material characteristics, and the rheological properties were tested using a battery of material characteristics methods. The biocompatibility was also evaluated as per ISO 7405. The setting time (20 min) and compressive strength (>11 Mpa) of FI-CPC satisfy the clinical requirements. It underwent setting without any exothermic reaction, keeping good dimensional stability. The cement paste could be extruded through a 18-gauge needle, easily and fully. It showed excellent cohesion when immersed in water. FI-CPC was seen to set into a micro-porous mass of hydroxyapatite, the mineral part of human dentin. It showed good attachment to dentin walls, when filled in tooth perforations. FI-CPC was found non-toxic, non-allergic, non-pyrogenic, and soft-tissue compatible. The study shows that FI-CPC provides a self setting bio-compatible paste with excellent rheological properties for surgical applications. The set cement provides good and stable sealing. The osteoconductive property is an added advantage. FI-CPC proves to be an ideal material for endodontic sealing/filling and periodontic repair.


Assuntos
Animais , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Células Cultivadas , Química Farmacêutica , Força Compressiva , Materiais Dentários/química , Durapatita/química , Microanálise por Sonda Eletrônica , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Camundongos , Músculo Esquelético/efeitos dos fármacos , Reologia , Pele/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA