Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 585-597, 2020.
Artigo em Inglês | WPRIM | ID: wpr-826796

RESUMO

Hypoglossal motor neurons (HMNs) innervate tongue muscles and play key roles in a variety of physiological functions, including swallowing, mastication, suckling, vocalization, and respiration. Dysfunction of HMNs is associated with several diseases, such as obstructive sleep apnea (OSA) and sudden infant death syndrome. OSA is a serious breathing disorder associated with the activity of HMNs during different sleep-wake states. Identifying the neural mechanisms by which the state-dependent activities of HMNs are controlled may be helpful in providing a theoretical basis for effective therapy for OSA. However, the presynaptic partners governing the activity of HMNs remain to be elucidated. In the present study, we used a cell-type-specific retrograde tracing system based on a modified rabies virus along with a Cre/loxP gene-expression strategy to map the whole-brain monosynaptic inputs to HMNs in mice. We identified 53 nuclei targeting HMNs from six brain regions: the amygdala, hypothalamus, midbrain, pons, medulla, and cerebellum. We discovered that GABAergic neurons in the central amygdaloid nucleus, as well as calretinin neurons in the parasubthalamic nucleus, sent monosynaptic projections to HMNs. In addition, HMNs received direct inputs from several regions associated with respiration, such as the pre-Botzinger complex, parabrachial nucleus, nucleus of the solitary tract, and hypothalamus. Some regions engaged in sleep-wake regulation (the parafacial zone, parabrachial nucleus, ventral medulla, sublaterodorsal tegmental nucleus, dorsal raphe nucleus, periaqueductal gray, and hypothalamus) also provided primary inputs to HMNs. These results contribute to further elucidating the neural circuits underlying disorders caused by the dysfunction of HMNs.

2.
Acta Pharmaceutica Sinica ; (12): 247-252, 2011.
Artigo em Chinês | WPRIM | ID: wpr-348969

RESUMO

Histaminergic neurons solely originate from the tuberomammillary nucleus (TMN) in the posterior hypothalamus and send widespread projections to the whole brain. Experiments in rats show that histamine release in the central nervous system is positively correlated with wakefulness and the histamine released is 4 times higher during wake episodes than during sleep episodes. Endogeneous prostaglandin E2 and orexin activate histaminergic neurons in the TMN to release histamine and promote wakefulness. Conversely, prostaglandin D2 and adenosine inhibit histamine release by increasing GABA release in the TMN to induce sleep. This paper reviews the effects and mechanisms of action of the histaminergic system on sleep-wake regulation, and briefly discusses the possibility of developing novel sedative-hypnotics and wakefulness-promoting drugs related to the histaminergic system.


Assuntos
Animais , Adenosina , Fisiologia , Dinoprostona , Fisiologia , Histamina , Metabolismo , Fisiologia , Região Hipotalâmica Lateral , Fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Fisiologia , Neurônios , Fisiologia , Neuropeptídeos , Fisiologia , Orexinas , Prostaglandina D2 , Fisiologia , Sono , Fisiologia , Vigília , Fisiologia , Ácido gama-Aminobutírico , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA