Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Endocrinology and Metabolism ; (12): 430-434, 2023.
Artigo em Chinês | WPRIM | ID: wpr-994341

RESUMO

Objective:To investigate whether interleukin(IL)-1β is involved in pyroptosis which leads to mouse islet β cell line βTC-6 cell damage, and to explore the role of JNK inhibitor SP600125 in inhibiting IL-1β induced βTC-6 cell pyroptosis.Methods:βTC-6 cell line and mouse islets were incubated with IL-1β for 48 h or intervened with both JNK inhibitor SP600125 and IL-1R antagonist IL-1Ra, then GSDMD expression and β cell pyroptosis morphology were detected by immunofluorescence staining of GSDMD and DAPI. The expression levels of Gsdmd, IL-1β and IL-18 mRNAs were detected by real time fluorescence PCR, and apoptosis was examined by Annexin-V/7-AAD staining combined with flow cytometry.Results:βTC-6 cell pyroptotic body was significantly increased in the IL-1β treated group compared with the control group, and the expressions of pyroptosis related genes Gsdmd, IL-1β, and IL-18 mRNA were significantly higher( P<0.05), and apoptosis was increased, suggesting that IL-1β effectively induced the βTC-6 cell pyroptosis, IL-1Ra prevented IL-1β induced βTC-6 cell pyroptosis. In the presence of JNK inhibitor SP600125, IL-1β treatment failed to induce the expressions of Gsdmd and IL-18 mRNA, markers of pyroptosis, and reduced the rate of apoptosis, indicating that SP600125 suppressed IL-1β induced βTC-6 cell pyroptosis. Conclusion:Pyroptosis is one of the mechanisms of βTC-6 cell impairment caused by IL-1β, and SP600125, a JNK inhibitor, can block the IL-1β induced pyroptosis pathway and has a potential role in inhibiting βTC-6 cell pyroptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA