Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Tissue Engineering and Regenerative Medicine ; (6): 433-441, 2017.
Artigo em Inglês | WPRIM | ID: wpr-655772

RESUMO

Hypoxia suppresses osteoblastic differentiation and the bone-forming capacity. As the leading osteoinductive growth factor used clinically in bone-related regenerative medicine, recombinant human bone morphogenic protein-2 (rhBMP- 2) has yielded promising results in unfavorable hypoxic clinical situations. Although many studies have examined the effects of rhBMP-2 on osteoblastic differentiation, mineralization and the related signaling pathways, those of rhBMP-2 on osteoblastic cells remain unknown, particularly under hypoxic conditions. Therefore, this study was conducted under a 1% oxygen tension to examine the differentiating effects of rhBMP-2 on osteoblastic cells under hypoxia. rhBMP-2 could also induce the differentiation and mineralization of Osteoblastic (MC3T3-E1) cells under1%hypoxic conditions. rhBMP-2 could also induce the differentiation and mineralization of MC3T3-E1 cells under 1% hypoxic conditions. rhBMP-2 increased the alkaline phosphatase {ALP} activity in a time dependent manner, and expression of ALP, collagen type-1 (Col-1) and osteocalcin (OC) mRNAwere up-regulated significantly in a time- and concentration-dependent manner. In addition, the area of the mineralized nodules increased gradually in a concentration-dependent manner. Western blot analysis, which was performed to identify the signaling pathways underlying rhBMP-2-induced osteoblastic differentiation under hypoxic conditions, showed that rhBMP-2 significantly promoted the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) in a time-dependent manner. A pretreatment with SB203580, a p38 MAPK inhibitor, inhibited the rhBMP-2-mediated differentiation and mineralization. Moreover, the phosphorylation of p38 induced by rhBMP-2 was inhibited in response to a pretreatment of the cells with Go6976, a protein kinase D {PKD) inhibitor. These findings suggest that rhBMP-2 induces the differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions via activation of the PKD and p38 MAPK signaling pathways.


Assuntos
Humanos , Fosfatase Alcalina , Hipóxia , Western Blotting , Colágeno , Mineradores , Osteoblastos , Osteocalcina , Oxigênio , Proteínas Quinases p38 Ativadas por Mitógeno , Fosforilação , Proteínas Quinases , Medicina Regenerativa
2.
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons ; : 24-32, 2007.
Artigo em Coreano | WPRIM | ID: wpr-784734
3.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 94-102, 2007.
Artigo em Coreano | WPRIM | ID: wpr-202203

RESUMO

The ameloblastoma is a common odontogenic tumor of the jaw bone and represents approximately 1% of tumor in the jaw. However, it might be able to infiltrate into the adjacent tissue, causing bony destruction and high recurrent rate. In this study, expression of RANKL and OPG in ameloblastoma in relation to age and gender of patient and recurrence, location of the lesion were examined through immunohistochemisry study. The RANKL and OPG antibody staining were used. The obtained result were as follow. 1. Positive immunoreactivity to RANKL/OPG in all specimens was found. 2. 1n recurrenc, location of ameloblastoma and age, gender of patients using immunohistochemical expression of RANKL. There was not significant difference. 3. 1n recurrence, location of ameloblastoma and age, gender of patients using immunohistochemical expression of OPG. There was not significant difference. In summary, it is suggested that activation of osteoclasts by RANKL is an important mechanism by which ameloblastomas cause bone destruction.


Assuntos
Humanos , Ameloblastoma , Arcada Osseodentária , Tumores Odontogênicos , Osteoclastos , Receptor Ativador de Fator Nuclear kappa-B , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA