Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Clinics in Orthopedic Surgery ; : 466-473, 2022.
Artigo em Inglês | WPRIM | ID: wpr-937376

RESUMO

Background@#To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. @*Methods@#Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September 2020. DNA was extracted from the infected tissue samples using the bead-beating method. A multiplex LAMP assay was conducted to identify MSSA and MRSA infections. To recognize the Staphylococcus genus, S. aureus, and methicillin resistance, 3 sets of 6 primers for the 16S ribosomal ribonucleic acid (rRNA) and the femA and mecA genes were used, respectively. The limit of detection and sensitivity (detection rate) of the LAMP assay for diagnosing MSSA and MRSA infection were analyzed. @*Results@#The LAMP result was positive for samples containing 10 3 colony-forming unit (CFU)/mL for 16S rRNA, 10 4 CFU/mL for femA, and 10 5 CFU/mL formecA. The limits of detection for 16S rRNA and femA were not different between MSSA and MRSA. For the 10 MSSA-positive samples, the LAMP assay showed 100% positive reactions for 16S rRNA and femA and a 100% negative reaction for mecA. For the 10 MRSA-positive samples, the LAMP assay showed 100% positive reactions for 16S rRNA and mecA but only 90% positive reactions for femA. The sensitivity (detection rate) of the LAMP assay for identifying MSSA and MRSA in infected tissue samples was 100% and 90%, respectively. @*Conclusions@#The results of this study suggest that the LAMP assay performed with tissue DNA samples can be a useful diagnostic method for the rapid detection of musculoskeletal infections caused by MSSA and MRSA.

2.
The Korean Journal of Parasitology ; : 77-82, 2021.
Artigo em Inglês | WPRIM | ID: wpr-875524

RESUMO

As malaria remains a major health problem worldwide, various diagnostic tests have been developed, including microscopy-based and rapid diagnostic tests. LabChip real-time PCR (LRP) is a small and portable device used to diagnose malaria using lab-on-a-chip technology. This study aimed to evaluate the diagnostic performance of LRP for detecting malaria parasites. Two hundred thirteen patients and 150 healthy individuals were enrolled from May 2009 to October 2015. A diagnostic detectability of LRP for malaria parasites was compared to that of conventional RT-PCR. Sensitivity of LRP for Plasmodium vivax, P. falciparum, P. malariae, and P. ovale was 95.5%, 96.0%, 100%, and 100%, respectively. Specificity of LRP for P. vivax, P. falciparum, P. malariae, and P. ovale was 100%, 99.3%, 100%, and 100%, respectively. Cohen’s Kappa coefficients between LRP and CFX96 for detecting P. vivax, P. falciparum, P. malariae, and P. ovale were 0.96, 0.98, 1.00, and 1.00, respectively. Significant difference was not observed between the results of LRP and conventional RT-PCR and microscopic examination. A time required to amplify DNAs using LRP and conventional RT-PCR was 27 min and 86 min, respectively. LRP amplified DNAs 2 times more fast than conventional RT-PCR due to the faster heat transfer. Therefore, LRP could be employed as a useful tool for detecting malaria parasites in clinical laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA