Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Physiologica Sinica ; (6): 703-714, 2017.
Artigo em Chinês | WPRIM | ID: wpr-348228

RESUMO

DREAM (downstream regulatory element antagonist modulator), Calsenilin and KChIP3 (potassium channel interacting protein 3) belong to the neuronal calcium sensor (NCS) superfamily, which transduces the intracellular calcium signaling into a variety of activities. They are encoded by the same gene locus, but have distinct subcellular locations. DREAM was first found to interact with DRE (downstream regulatory element) site in the vicinity of the promoter of prodynorphin gene to suppress gene transcription. Calcium can disassemble this interaction by binding reversibly to DREAM protein on its four EF-hand motifs. Apart from having calcium dependent DRE site binding, DREAM can also interact with other transcription factors, such as cAMP responsive element binding protein (CREB), CREB-binding protein (CBP) and cAMP responsive element modulator (CREM), by this concerted actions, DREAM extends the gene pool under its control. DREAM is predominantly expressed in central nervous system with its highest level in cerebellum, and accumulating evidence demonstrated that DREAM might play important roles in pain sensitivity. Novel findings have shown that DREAM is also involved in learning and memory processes, Alzheimer's disease and stroke. This mini-review provides a brief introduction of its discovery history and protein structure properties, focusing on the mechanism of DREAM nuclear translocation and gene transcription regulation functions.

2.
Acta Pharmaceutica Sinica ; (12): 687-694, 2009.
Artigo em Chinês | WPRIM | ID: wpr-278198

RESUMO

A simple model organism Caenorhabditis elegans has contributed substantially to the fundamental researches in biology. In an era of functional genomics, nematode worm has been developed into a multi-purpose tool that can be exploited to identify disease-causing or disease-associated genes, validate potential drug targets. This, coupled with its genetic amenability, low cost experimental manipulation and compatibility with high throughput screening in an intact physiological condition, makes the model organism into an effective toolbox for drug discovery. This review shows the unique features of C. elegans, how it can play a valuable role in our understanding of the molecular mechanism of human diseases and finding drug leads in drug development process.


Assuntos
Animais , Caenorhabditis elegans , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA