Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 658-668, 2014.
Artigo em Chinês | WPRIM | ID: wpr-279474

RESUMO

Fibroblast growth factor -21 (FGF-21) is a recently discovered metabolic regulation factor, regulating glucose and lipid metabolism and increasing insulin sensitivity. FGF-21 is expected to be a potential anti-diabetic drug. Expression of FGF-21 as inclusion bodies has advantages for high yield and purity, but the bioactivity of the protein is almost totally lost after denature and renature. That is why FGF-21 is currently expressed in soluble form. As a result, the yield is considerably low. In this study, we used SUMO vector to express SUMO-human FGF-21 (SUMO-hFGF-21) in form of inclusion body. We optimized the culture conditions to increase the yield of the bioactive human fibroblast growth factor-21. We applied the hollow fiber membrane filtration column to enrich the bacteria, wash, denature and renature inclusion bodies. After affinity and gel filtration chromatography, we examined the hypoglycemic activity of FGF-21 by the glucose uptake assay in HepG2 cells. We also detected the blood glucose concentration of type 2 diabetic db/db model mice after short or long-term treatment. The results show that the yield of ihFGF-21 was 4 times higher than that of shFGF-21. The yield was 20 mg/L for ihFGF-21 vs. 6 mg/L for shFGF-21. The purity of ihFGF-21 was above 95%, while shFGF-21 was 90%. Compared with the traditional method of extracting inclusion bodies, the production cycle was about three times shortened by application of hollow fiber membrane filtration column technology, but the bioactivity did not significantly differ. This method provides an efficient and cost-effective strategy to the pilot and industrial production of hFGF-21.


Assuntos
Animais , Humanos , Camundongos , Bactérias , Metabolismo , Diabetes Mellitus Experimental , Tratamento Farmacológico , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos , Vetores Genéticos , Glucose , Metabolismo , Células Hep G2 , Hipoglicemiantes , Corpos de Inclusão , Metabolismo , Proteínas Recombinantes de Fusão , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina
2.
Acta Pharmaceutica Sinica ; (12): 1000-6, 2014.
Artigo em Chinês | WPRIM | ID: wpr-448683

RESUMO

This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.

3.
Acta Pharmaceutica Sinica ; (12): 977-84, 2014.
Artigo em Chinês | WPRIM | ID: wpr-448680

RESUMO

Previous studies proposed that the synergistic effect of fibroblast growth factor-21 (FGF-21) and insulin may be due to the improvement of insulin sensitivity by FGF-21. However, there is no experimental evidence to support this. This study was designed to elucidate the mechanism of synergistic effect of FGF-21 and insulin in the regulation of glucose metabolism. The synergistic effect of FGF-21 and insulin on regulating glucose metabolism was demonstrated by investigating the glucose absorption rate by insulin resistance HepG2 cell model and the blood glucose chances in type 2 diabetic db/db mice after treatments with different concentrations of FGF-21 or/and insulin; The synergistic metabolism was revealed through detecting GLUT1 and GLUT4 transcription levels in the liver by real-time PCR method. The experimental results showed that FGF-21 and insulin have a synergistic effect on the regulation of glucose metabolism. The results of real-time PCR showed that the effective dose of FGF-21 could up-regulate the transcription level of GLUT1 in a dose-dependent manner, but had no effect on the transcription level of GLUT4. Insulin (4 u) alone could up-regulate the transcription level of GLUT4, yet had no effect on that of GLUT1. Ineffective dose 0.1 mg kg(-1) FGF-21 alone could not change the transcription level of GLUT1 or GLUT4. However, when the ineffective dose 0.1 mg x kg(-1) FGF-21 was used in combination with insulin (4 u) significantly increased the transcription levels of both GLUT1 and GLUT4, the transcription level of GLUT1 was similar to that treated with 5 time concentration of FGF-21 alone; the transcription level of GLUT4 is higher than that treated with insulin (4 u) alone. In summary, in the presence of FGF-21, insulin increases the sensitivity of FGF-21 through enhancing GLUT1 transcription. Vice versa, FGF-21 increases the sensitivity of insulin by stimulating GLUT4 transcription in the presence of insulin. FGF-21 and insulin exert a synergistic effect on glucose metabolism through mutual sensitization.

4.
Chinese Journal of Biotechnology ; (12): 1644-1653, 2013.
Artigo em Chinês | WPRIM | ID: wpr-242429

RESUMO

The aim of the study is to establish a platform to deliver therapeutic proteins into target cells through a polyarginine-based cell penetrating peptide. To facilitate the expression of therapeutic proteins, a pSUMO (Small Ubiquitin-like Modifier)-R9-EGFP (enhanced green fluorescence protein) prokaryotic expression vector was constructed. After induction, the fusion protein SUMO-R9-EGFP was efficiently expressed. To validate the cell penetrating ability of the fusion protein, HepG2 cells were incubated with the purified R9-EGFP or EGFP protein as control, internalization of the fluorescent proteins was examined by either flow cytometry or confocal microscopy. The result obtained by flow cytometry showed that the R9-EGFP fusion protein could efficiently penetrate into the HepG2 cells in a dose and time-dependent manner. In contrast, the fluorescence was barely detected in the HepG2 cells incubated with EGFP control. The fluorescence intensity of the R9-EGFP treated cells reached plateau phase after 1.5 h. The result obtained by confocal microscopy shows that R9-EGFP efficiently entered into the HepG2 cells and was exclusively located in the cytoplasm, whereas, no fluorescence was detected in the cells incubated with the EGFP control. The heparin inhibition experiment showed that heparin could inhibit penetrating effect of the R9-EGFP protein by about 50%, suggesting that the penetrating ability of the fusion protein is heparin-dependent. In summary, the study has established a platform to deliver therapeutic proteins into target cells through a polyarginine-based penetrating peptide.


Assuntos
Humanos , Peptídeos Penetradores de Células , Genética , Farmacologia , Vetores Genéticos , Genética , Proteínas de Fluorescência Verde , Genética , Células Hep G2 , Peptídeos , Genética , Metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão , Genética , Farmacologia
5.
Chinese Journal of Biotechnology ; (12): 955-964, 2013.
Artigo em Chinês | WPRIM | ID: wpr-233184

RESUMO

To enhance the penetration of P53 into tumor cells by fusion it with the cell penetrating peptide 9R. The fusion gene of 9R-p53 was cloned into the expression vector. The fusion protein, CPPs-P53, was expressed and purified. We detected the rate of cell growth inhibition and apoptosis by MTT and Annexin-V-FITC/PI double stained method respectively for measuring its effect on tumor cells. CPPs-P53 and P53 were successfully expressed and purified, the purity of both proteins reached up to 90%. MTT assay showed that the cell growth inhibition by CPPs-P53 was more efficient than P53, and the rate of cell growth inhibition is dose-dependent. The apoptosis experiment showed that P53 could induce apoptosis of tumor cells. Compared with the P53, CPPs-P53 had a more significant effect in inducing cell apoptosis (**P < 0.01). The CPPs-P53 shows more significant effects than P53 in inhibiting cell growth and inducing apoptosis on tumor cells.


Assuntos
Humanos , Apoptose , Linhagem Celular Tumoral , Peptídeos Penetradores de Células , Farmacologia , Proteína Supressora de Tumor p53 , Farmacologia
6.
Acta Pharmaceutica Sinica ; (12): 352-8, 2013.
Artigo em Chinês | WPRIM | ID: wpr-445543

RESUMO

Insulin is the most common medicine used for diabetic patients, unfortunately, its effective time is short, even the long-acting insulin cannot obtain a satisfactory effect. Fibroblast growth factor (FGF)-21 is a recently discovered glucose mediator and expected to be a potential anti-diabetic drug that does not rely on insulin. In this study, db/db mice were used as the type 2 diabetic model to examine whether mFGF-21 has the long-term blood lowering effect on the animal model. The results showed that mFGF-21 could stably maintain the blood glucose at normal level for a long-term in a dose-dependent manner. Administration of mFGF-21 once a day with three doses (0.125, 0.25 and 0.5 mg x kg(-1)) could maintain blood glucose of the model animals at normal level for at least 24 h. Administration of mFGF-21 every two days with the same doses could maintain blood glucose of the model animals at normal level for at least 48 h, although it took longer time for blood glucose to reach to normal level depending on doses used (twenty injections for 0.125 mg x kg(-1) and 0.25 mg x kg(-1) doses, ten injections for 0.5 mg x kg(-1) dose). Surprisingly, the blood glucose of the treated model animals still maintained at normal level for 24 h after the experiment terminated. Glycosylated hemoglobin level of the animals treated with mFGF-21, which represented long-term glucose status, decreased significantly compared to the control group and the insulin group. The results suggest that FGF-21 has potential to become a long-acting and potent anti-diabetic drug.

7.
Acta Pharmaceutica Sinica ; (12): 1409-14, 2013.
Artigo em Chinês | WPRIM | ID: wpr-445477

RESUMO

This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on hypertension induced by insulin resistance in rats and to provide mechanistic insights into its therapeutic effect. Male Sprague-Dawley (SD) rats were fed with high-fructose (10%) water to develop mild hypertensive models within 4 weeks, then randomized into 4 groups: model control, FGF21 0.25, 0.1 and 0.05 micromol x kg(-1) x d(-1) groups. Five age-matched normal SD rats administrated with saline were used as normal controls. The rats in each group were treated once a day for 4 weeks. Body weight was measured weekly, systolic blood pressure (SBP) was measured noninvasively using a tail-cuff method, insulin sensitivity was assessed using oral glucose tolerance test (OGTT) and HOMA-IR assay. At the end of the treatment, blood samples were collected, and blood glucose, serum cholesterol, serum triglyceride and serum insulin were measured. The results showed that blood pressure of the rats treated with different doses of FGF21 returned to normal levels [(122.2 +/- 3.5) mmHg, P < 0.01] after 4-week treatment, whereas, SBP of untreated (model control) rats maintained a high level [(142.5 +/- 4.5) mmHg] throughout the treatment. The observation of blood pressure in 24 h revealed that SBP of FGF21 treated-rats maintained at (130 +/- 4.5) mmHg vs. (143 +/- 5.5) mmHg for model control (P < 0.01). FGF21 treatment groups improved serum lipids obviously, total cholesterol (TC) and triglyceride (TG) levels decreased significantly to normal levels. The serum NO levels of three different doses FGF21 treatment group were significantly higher than that of the model control group [(7.32 +/- 0.11), (7.24 +/- 0.13), (6.94 +/- 0.08) vs. (6.56 +/- 0.19) micromol x L(-1), P < 0.01], and the degree of improvement showed obvious dose-dependent manner, indicating that FGF21 can significant increase serum NO in fructose-induced hypertension rat model and improve endothelial NO release function. The results of OGTT and HOMA-IR showed that insulin resistance state was significantly relieved in a dose-dependent manner. Thus, this study demonstrates that FGF21 significantly ameliorates blood pressure in fructose-induced hypertension model by relieving insulin resistance. This finding provides a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of essential hypertension.

8.
Acta Pharmaceutica Sinica ; (12): 1778-84, 2013.
Artigo em Chinês | WPRIM | ID: wpr-448787

RESUMO

This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on NAFLD in MSG-IR mice and to provide mechanism insights into its therapeutic effect. The MSG-IR mice with insulin resistance were treated with high dose (0.1 micromol.kg-1d-1) and low dose (0.025 micromol.kg-1d-1) of FGF21 once a day for 5 weeks. Body weight was measured weekly. At the end of the experiment, serum lipids, insulin and aminotransferases were measured. Hepatic steatosis was observed. The expression of key genes regulating energy metabolism were detected by real-time PCR. The results showed that after 5 weeks treatment, both doses of FGF21 reduced body weight (P<0.01), corrected dyslipidemia (P<0.01), reversed steatosis and restored the liver morphology in the MSG model mice and significantly ameliorated insulin resistance. Additionally, real-time PCR showed that FGF21 significantly reduced transcription levels of fat synthetic genes, decreased fat synthesis and promoted lipolysis and energy metabolism by up-regulating key genes of lipolysis, thereby liver fat accumulation was reduced and liver function was restored to normal levels. In conclusion, FGF21 significantly reduces body weight of the MSG-IR mice, ameliorates insulin resistance, reverses hepatic steatosis. These findings provide a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of NAFLD.

9.
Acta Pharmaceutica Sinica ; (12): 897-903, 2012.
Artigo em Chinês | WPRIM | ID: wpr-431021

RESUMO

Fibroblast growth factor 21 (FGF21) is a member of FGF family. It has been demonstrated that FGF21 is an independent, safe and effective regulator of blood glucose levels in vivo. In order to improve the activity of FGF21, we exchanged the beta10-beta12 domain of the human FGF21 with that of the mouse FGF21 to construct a novel FGF21 gene (named hmFGF21), and then subcloned hmFGF21 gene into the SUMO expression vector to create pSUMO-hmFGF21 and transformed it into E. coli Rosetta for expression of the fusion protein SUMO-hmFGF21. Both in vitro and in vivo glucose regulation activity of hmFGF21 was evaluated. The SDS-PAGE result showed that compared with wild-type hFGF21, the soluble expression of hmFGF21 increased about 2-fold. HmFGF21 was more potent in stimulation of glucose uptake in HepG2 cells in vitro. The results of anti-diabetic effect on db/db mice demonstrated that hmFGF21 had better efficacy on controlling the blood glucose of the db/db diabetic animals than wild-type hFGF21. These results suggest that the biological properties of FGF21 are significantly improved by optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA