Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E146-E153, 2014.
Artigo em Chinês | WPRIM | ID: wpr-804396

RESUMO

Objective To analyze and compare hemodynamic features of two different options for modified B-T shunt (MBTS) surgery, namely end-to-side(ETS) and side-to-side (STS), so as to provide references for clinical treatment of single ventricle heart defect syndrome. MethodsThe real geometric model was reconstructed by medical images obtained from a patient with hypoplastic left heart syndrome (HLHS); MBTS surgery was simulated through virtual operations; a lumped parameter model (LPM) was constructed based on physiological data of the patient; the post-operational boundary conditions of computational fluid dynamics (CFD) models (namely STS model and ETS model) were predicted based on the LPM; numerical simulation was conducted on two CFD models by using finite volume method. Results Flow details and wall shear stress distributions were all obtained for two models. The mean oscillatory shear index (OSI) of ETS model and STS model in part of pulmonary arteries was 3.058×10-3 and 13.624×10-3, respectively, while the energy loss was 116.5 and 94.8 mW, respectively, and blood flow rate ratios of left pulmonary artery to right pulmonary artery (RRPA/LPA) were 0.8 and 1.72, respectively. Conclusions There were nearly no differences between two CFD models in energy loss, which led to a relatively small impact on the surgery. The STS model had a more balanced pulmonary artery blood perfusion and a smaller mean OSI in part of pulmonary arteries, therefore, the STS model was superior to the ETS model. This study provides an important theoretical support and reference for treating patients with HLHS.

2.
Journal of Medical Biomechanics ; (6): E063-E071, 2013.
Artigo em Chinês | WPRIM | ID: wpr-804262

RESUMO

Objective Modified B-T shunt (MBTS) and central shunt (CS) are two common surgical procedures for the treatment of tetralogy of fallot (TOF). The purpose is to analyze and compare the hemodynamic features of MBTS and CS. Methods 3D anatomy was reconstructed by medical images obtained from a patient with TOF, and two computational models were generated through virtual operations. A lumped parameter model was constructed to predict the post-operational boundary conditions. Computational fluid dynamics (CFD) was performed for the two models. Results A persistent pulmonary blood perfusion was observed in each model both during the systolic phase and diastolic phase, but the maximum velocities in the shunt were different for the two models. The pressure drop of the shunt in CS model was higher than that in MBTS model. The wall shear stress of the shunt in the MBTS model ranged unevenly from 0.025 to 340 Pa, while the wall shear stress in CS model ranged relatively evenly from 32.2 to 72.6 Pa. Conclusions Pulmonary artery blood was increased effectively for both options. The blood perfusion of right upper extremity was decreased in the MBTS model. More blood was directed into the pulmonary artery in CS model. Attention should be paid to the fact that the pressure gradient was large at the proximal anastomosis in both models in clinic. This study provides important theoretical references for surgeons to make choice from the surgery options in the treatment with TOF.

3.
Journal of Medical Biomechanics ; (6): E677-E683, 2013.
Artigo em Chinês | WPRIM | ID: wpr-804252

RESUMO

The study of hemodynamics, which refers to dynamics inside the blood circulation, mainly includes the flow rate, flow resistance, pressure, shear stress, disturbed flow, as well as their associations in between. Therefore, with its important significance in the clinical treatments of vessel curvature, arterial stenosis or occlusion, pathological artery branches and aneurism, study about hemodynamics is essential to human health. Currently, extensive researches on hemodynamics have been conducted with respect to artery bypass, coronary arterial stenosis, abdominal aortic aneurysm, atherosclerosis, cerebral aneurysm and swirling flow. With the development of such research on hemodynamics, surgical planning and interventional therapy have improved rapidly. The influence mechanism of hemodynamic parameters, including pressure, flow resistance, flow rate, wall shear stress, blood viscosity, flow separation, turbulent flow, vortex on the post-operation complications could be deeply explored with the help of more and more clinical apparatus and have gained some achievements.

4.
Journal of Medical Biomechanics ; (6): E642-E647, 2013.
Artigo em Chinês | WPRIM | ID: wpr-804246

RESUMO

Objective Based on time-coupled multiscale coupling algorithm, to simulate the hemodynamics after systemic-pulmonary shunt procedure on single ventricular patient so as to obtain the local three-dimensional (3D) fluid field and global hemodynamic information before and after surgery. MethodsFirstly, the 0D-3D coupled multiscale hemodynamic model of systemic-pulmonary shunt procedure was established based on the lumped parameter model (0D) before surgery and the shunt model (3D), then the 0D-3D interface coupling condition and the time coupling algorithm were discussed. Secondly, the multiscale simulation of 3D CFD (computational fluid dynamics) model coupled with 0D lumped parameter model was realized based on lattice Boltzmann method. Finally, the multiscale simulation results were compared with patient’s 0D simulation results to study the hemodynamic changes before and after surgery. Results The global hemodynamic change and local 3D flow pattern were obtained by this multiscale simulation. The pulmonary blood flow distribution ratio was increased from 32.21% to 57.8%. Conclusions The systemic-pulmonary shunt procedure can effectively increase the blood supply of pulmonary circulation by implanting the shunt between the systematic circulation and pulmonary circulation. The geometrical multiscale method can effectively simulate both the coarse global and detailed local cardiovascular hemodynamic changes, which is of great significance in pre-operation planning of cardiovascular surgery.

5.
Journal of Medical Biomechanics ; (6): E622-E628, 2013.
Artigo em Chinês | WPRIM | ID: wpr-804243

RESUMO

Objective To study the hemodynamics of central shunt (CS) by numerical simulation and investigate the effects of the elastic and rigid vessel wall on distributions of hemodynamic parameters in the vessel. Methods Two idealized CS models were constructed, one with a rigid wall (the rigid model) and the other with an elastic wall (the elastic model). Numerical calculation was conducted by the finite element method, and the elastic model adopted the fluid structure interaction. Results The distribution of flow velocity and pressure in both models were generally the same. About 68.9% of the aortic blood was directed into the pulmonary artery for the rigid model, as compared to 70% for the elastic model. The pressure drops within the shunt for the elastic model and rigid model were about 7.668 8 kPa and 7.222 3 kPa, respectively. The maximum variation in the average cross sections along the shunt was about 2.2% for the elastic model, appearing at the proximal end to side (ETS) anastomosis. The maximum difference of wall shear stress (WSS) between the two models at five key regions of each was about 16.1%. Conclusions Generally, the global flow structure in both the CS models remains unchanged; the elasticity of the vessel wall slightly influenced the flow distributions and pressure drop of the shunt; the effect from elasticity of the vessel wall on average cross sections along the shunt was higher at the proximal ETS anastomosis than that at the distal ETS anastomosis; the hypothesis that the vessel wall is rigid is acceptable in CS numerical simulations for the treatment of tetralogy of Fallot (TOF). However, the coupling of flow dynamics and wall mechanics may lead to a more reliable simulation result in the CS.

6.
Journal of Medical Biomechanics ; (6): E488-E494, 2012.
Artigo em Chinês | WPRIM | ID: wpr-803897

RESUMO

Objective To predict the influence of connecting position between left superior vena cava (LSVC) and pulmonary artery on bilateral bidirectional Glenn (BBDG) shunt by numerical simulation. Methods Firstly, a 3D anatomical geometrical model was reconstructed by the medical images of a hypoplastic left heart syndrome (HLHS) patient with LSVC. Secondly, based on haptic deformations, several computational models were virtually generated, and computational fluid dynamics (CFD) numerical simulations were conducted using finite volume method. Finally, hemodynamic parameters were analyzed and evaluated. Results Flow recirculation was observed in the pulmonary artery between the LSVC and right superior vena cava (RSVC). The diameter of RSVC was defined as D. Varying the distance between LSVC and RSVC from 2D to 3.5D resulted in the least energy dissipation at 3D and the most at 2D. The blood flow rate ratios of left pulmonary artery to right pulmonary artery (LPA/RPA) ranged from 0.65-1.11. Conclusions Too close distance between LSVC and RSVC would bring out unfavorable hemodynamic distributions and consume more energy in the treatment of BBDG shunt. This study is of significance for surgeons to evaluate the optimal Fontan options in the treatment of HLHS accompanied by LSVC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA