Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Zhejiang University. Science. B ; (12): 147-158, 2018.
Artigo em Inglês | WPRIM | ID: wpr-1010375

RESUMO

Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (<0.71 mg/kg dry weight) and nitrate (<3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with minimized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, minimizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils.


Assuntos
Humanos , Biomassa , Cádmio/metabolismo , Clorofila/análise , Genótipo , Ipomoea/genética , Nitratos/metabolismo
2.
Journal of Zhejiang University. Science. B ; (12): 427-434, 2008.
Artigo em Inglês | WPRIM | ID: wpr-359410

RESUMO

Disparity in the root morphology of six rice (Oryza sativa L.) genotypes varying in potassium (K) efficiency was studied with three K levels: 5 mg/L (low), 10 mg/L (moderate) and 40 mg/L (adequate) in hydroponic culture. Morphological parameters included root length, surface area, volume and count of lateral roots, as well as fine (diameter<0.2 mm) and thick (diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K, but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels, all the efficient rice genotypes developed more fine roots (diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology, higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels, indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots. K deficiency affected not only the root morphology, but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage, and could maintain the developed root architecture to adapt to the low K growth medium.


Assuntos
Genótipo , Oryza , Metabolismo , Raízes de Plantas , Potássio , Metabolismo
3.
Journal of Zhejiang University. Science. B ; (12): 707-712, 2008.
Artigo em Inglês | WPRIM | ID: wpr-359381

RESUMO

The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.


Assuntos
Humanos , Antioxidantes , Metabolismo , Células CACO-2 , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ferro , Farmacocinética
4.
Journal of Zhejiang University. Science. B ; (12): 197-209, 2008.
Artigo em Inglês | WPRIM | ID: wpr-277283

RESUMO

Water eutrophication has become a worldwide environmental problem in recent years, and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication. In this paper, recent advances in current status and major mechanisms of water eutrophication, assessment and evaluation criteria, and the influencing factors were reviewed. Water eutrophication in lakes, reservoirs, estuaries and rivers is widespread all over the world and the severity is increasing, especially in the developing countries like China. The assessment of water eutrophication has been advanced from simple individual parameters like total phosphorus, total nitrogen, etc., to comprehensive indexes like total nutrient status index. The major influencing factors on water eutrophication include nutrient enrichment, hydrodynamics, environmental factors such as temperature, salinity, carbon dioxide, element balance, etc., and microbial and biodiversity. The occurrence of water eutrophication is actually a complex function of all the possible influencing factors. The mechanisms of algal blooming are not fully understood and need to be further investigated.


Assuntos
Animais , Humanos , Meio Ambiente , Eucariotos , Eutrofização , Água , Microbiologia da Água
5.
Journal of Zhejiang University. Science. B ; (12): 210-220, 2008.
Artigo em Inglês | WPRIM | ID: wpr-277282

RESUMO

Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.


Assuntos
Biodegradação Ambiental , Metais Pesados , Metabolismo , Poluentes do Solo , Metabolismo , Poluentes Químicos da Água , Metabolismo
6.
Journal of Zhejiang University. Science. B ; (12): 243-249, 2008.
Artigo em Inglês | WPRIM | ID: wpr-277278

RESUMO

Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 micromol/L Zn2+ and/or 200 micromol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2.


Assuntos
Cádmio , Farmacologia , Glutationa , Metabolismo , Peróxido de Hidrogênio , Metabolismo , Cinética , Folhas de Planta , Metabolismo , Brotos de Planta , Sedum , Metabolismo , Enxofre , Metabolismo , Zinco , Farmacologia
7.
Journal of Zhejiang University. Science. B ; (12): 250-260, 2008.
Artigo em Inglês | WPRIM | ID: wpr-277277

RESUMO

Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)(2) to reach a concentration range of 0-16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5-1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1-16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination.


Assuntos
Biomassa , Cádmio , Farmacologia , Carbono , Metabolismo , Ácidos Graxos , Metabolismo , Viabilidade Microbiana , Nitrogênio , Metabolismo , Fosfolipídeos , Metabolismo , Microbiologia do Solo , Fatores de Tempo
8.
Journal of Zhejiang University. Science. B ; (12): 1-13, 2007.
Artigo em Inglês | WPRIM | ID: wpr-309042

RESUMO

Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.


Assuntos
Humanos , Disponibilidade Biológica , Transporte Biológico Ativo , Contaminação de Alimentos , Metais Pesados , Farmacocinética , Toxicidade , Plantas Comestíveis , Metabolismo , Toxicidade , Poluentes do Solo , Farmacocinética , Toxicidade , Verduras , Metabolismo , Toxicidade
9.
Journal of Zhejiang University. Science. B ; (12): 111-115, 2007.
Artigo em Inglês | WPRIM | ID: wpr-309028

RESUMO

Radiotracer techniques were employed to characterize (65)Zn adsorption and desorption in root-cell-wall of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of (65)Zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more (65)Zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of (65)Zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more (65)Zn accumulated in desorbed root-cell-wall of NHE. Zn(2+) binding in root-cell-wall preparations of NHE was greater than that in HE under high Zn(2+) concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb Zn(2+), whereas the desorption characteristics were different, and with most of (65)Zn binding on root of HE being available for loading into the xylem, as a result, more (65)Zn was translocated to the shoot.


Assuntos
Adsorção , Biodegradação Ambiental , Células Cultivadas , Cinética , Taxa de Depuração Metabólica , Raízes de Plantas , Biologia Celular , Metabolismo , Sedum , Biologia Celular , Metabolismo , Zinco , Farmacocinética
10.
Journal of Zhejiang University. Science. B ; (12): 192-207, 2007.
Artigo em Inglês | WPRIM | ID: wpr-309017

RESUMO

Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.


Assuntos
Biodegradação Ambiental , Disponibilidade Biológica , Metais Pesados , Metabolismo , Desenvolvimento Vegetal , Plantas , Metabolismo , Microbiologia , Rhizobiaceae , Metabolismo , Microbiologia do Solo , Poluentes do Solo , Metabolismo
11.
Journal of Zhejiang University. Science. B ; (12): 521-531, 2006.
Artigo em Inglês | WPRIM | ID: wpr-251893

RESUMO

<p><b>OBJECTIVE</b>This study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal.</p><p><b>METHODS</b>The aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons.</p><p><b>RESULTS</b>Eichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment) and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system, the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, COD(Mn), and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 3 orders of magnitude, as compared to the un-inoculated treatments. Similar to the first experiment, higher water transparency and lower values of chlorophyll a, COD(Mn) and pH were observed in the plant+ INCB integrated system, as compared to other treatments. These results indicated that plant-microbe interaction showed beneficial effects on N removal from the eutrophic waterbody.</p>


Assuntos
Biodegradação Ambiental , Eutrofização , Fisiologia , Magnoliopsida , Metabolismo , Nitrogênio , Farmacocinética , Integração de Sistemas , Microbiologia da Água , Poluentes Químicos da Água , Farmacocinética , Purificação da Água , Métodos
12.
Journal of Zhejiang University. Science. B ; (12): 696-701, 2006.
Artigo em Inglês | WPRIM | ID: wpr-251868

RESUMO

Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea experiment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops.


Assuntos
Citrus , Produtos Agrícolas , Economia , Padrões de Referência , Fertilizantes , Frutas , Padrões de Referência , Folhas de Planta , Química , Solo , Chá , Padrões de Referência
13.
Journal of Zhejiang University. Science. B ; (12): 91-95, 2005.
Artigo em Inglês | WPRIM | ID: wpr-316369

RESUMO

Phytoremediation effectiveness and remediation costs are driving factors of this project. Full utilization of plant resources after their being used for phytoremediation is an unsolved problem. GC/MS technique was used to investigate the volatiles of the flowers from Elsholtzia argyi (PFE1: Purple Flower Elsholtzia) and their variation (WFE: White Flower Elsholtzia), naturally growing in Pb/Zn mined area, and Elsholtzia argyi (PFE2: Purple Flower Elsholtzia), naturally growing in Jiuxi uncontaminated agriculture soil. Seventeen compounds constituting 86.88% of total essential oils were identified in PFE1, with 2,6-octadienoic acid,3,7-dimethyl-methyl ester being the main constituent (63.30%). Sixteen compounds accounting for 95.32% of total essential oils were identified in WFE, with caryophyllene being the main component (55.02%). Compared to PFE1, PFE2 contains lower level of 2,6-octadienoic acid,3,7-dimethyl-methyl ester (31.76%), which is the main constituent in the total essential oils of PFE2. Caryophyllene is the main ingredient of flavor. Elsholtzia ketone was identified in all the three Elsholtzia plants. It can be concluded that the selected Elsholtzia argyi plants can be exploited on their versatile uses as fragrances and antiseptics due to the perfume ingredient and antibacterial components existing in their essential oils.


Assuntos
Agricultura , Métodos , Biodegradação Ambiental , Conservação dos Recursos Naturais , Flores , Classificação , Metabolismo , Lamiaceae , Classificação , Metabolismo , Óleos Voláteis , Metabolismo , Extratos Vegetais , Metabolismo , Especificidade da Espécie
14.
Journal of Zhejiang University. Science. B ; (12): 96-99, 2005.
Artigo em Inglês | WPRIM | ID: wpr-316368

RESUMO

A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 micromol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with leaf Cu level. The leaf Glu level negatively correlated with leaf GABA level in Elsholtzia splendens. The depletion of leaf Glu may be related to the enhanced synthesis of leaf GABA under Cu stress.


Assuntos
Cobre , Toxicidade , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Fisiologia , Regulação da Expressão Gênica , Lamiaceae , Metabolismo , Folhas de Planta , Metabolismo , Ácido gama-Aminobutírico , Metabolismo
15.
Journal of Zhejiang University. Science. B ; (12): 311-318, 2005.
Artigo em Inglês | WPRIM | ID: wpr-249214

RESUMO

Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 micromol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 micromol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 micromol/L Cu, both root and leaf cell organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days' exposure to 500 micromol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 micromol/L and 500 micromol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens' chloroplast when the plant is exposed to Cu levels>250 micromol/L, as compared to those in the plant grown in 0.25 micromol/L Cu. Copper treatment at levels>250 micromol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens.


Assuntos
Cobre , Metabolismo , Lamiaceae , Biologia Celular , Metabolismo , Microscopia Eletrônica de Transmissão , Folhas de Planta , Biologia Celular , Metabolismo , Raízes de Plantas , Biologia Celular , Metabolismo , Caules de Planta , Biologia Celular , Metabolismo
16.
Journal of Zhejiang University. Science. B ; (12): 546-552, 2005.
Artigo em Inglês | WPRIM | ID: wpr-249174

RESUMO

Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respectively, were investigated in the aspect of their response to Pb toxicity in the presence or absence of EDTA addition. After 8 d's Pb treatment, root length, root surface area and root volume of E. splendens decreased much more than those of E. argyi, and reduced considerably with increase of Pb, while no marked change was noted for root average diameter. Compared to E. argyi, length of root with diameter (D)<0.2 mm was significantly reduced for E. splendens as Pb increasing. Root with cross-sectional area of D<0.1 mm for E. splendens was at Pb> or =10 mg/L, while for E. argyi, it was at Pb> or =25 mg/L. DW of E. splendens decreased much more than that of E. argyi with increase of Pb. E. argyi exhibited much more tolerance to Pb toxicity than E. splendens. Treatment with 100 mg/L Pb plus 50 mmol/L EDTA significantly decreased the length and surface area of D< or =0.2 mm root, increased the length and surface area of 0.2< or =D< or =0.8 mm root for the case of E. argyi, while for E. splendens, length and surface area of D<0.6 mm root reduced, as compared to 100 mg/L Pb treatment, alone. At 100 mg/L Pb, shoot Pb accumulation in E. splendens and E. argyi were 27.9 and 89.0 microg/plant DW respectively, and much more Pb was uptaken by the root and translocated to the stem of E. argyi as compared to E. splendens. Treatment of the plant with 100 mg/L Pb plus 50 mmol/L EDTA increase leaf Pb accumulation from 16.8 to 84.9 g/plant for E.splendens and from 18.8 to 52.5 g/plant for E. argyi, while both root and stem Pb pronouncedly reduced for both Elsholtzia species. The increased translocation of Pb to the leaf of E. splendens than that of E. argyi at the treatment of 100 mg/L Pb plus 50 mmol/L EDTA should be further investigated.


Assuntos
Biodegradação Ambiental , Proliferação de Células , Relação Dose-Resposta a Droga , Resíduos Industriais , Lamiaceae , Classificação , Metabolismo , Chumbo , Farmacocinética , Toxicidade , Raízes de Plantas , Metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA