Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 1688-1692, 2015.
Artigo em Chinês | WPRIM | ID: wpr-351283

RESUMO

An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.


Assuntos
Ácido Abscísico , Farmacologia , Cor , Medicamentos de Ervas Chinesas , Química , Flavanonas , Glucosídeos , Glycyrrhiza uralensis , Química , Ácido Glicirrízico , Reguladores de Crescimento de Plantas , Farmacologia
2.
China Journal of Chinese Materia Medica ; (24): 1914-1918, 2015.
Artigo em Chinês | WPRIM | ID: wpr-351240

RESUMO

To optimize indices of molecular identification for authentication of Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix, four indices, including sequence similarity, specific positions, genetic distance and phylogenetic tree, were compared based on trnL-trnF sequences. Total DNA was extracted from Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix, and trL-trnF sequences were amplified and sequenced. Sequence similarity was calculated by BLAST analysis. Specific positions were compared by DNAman software. Genetic distance and phylogenetic tree were analyzed by Mega software. The results showed that the inter-specific and intra-specific similarity of P. ginseng and P. quinquefolius respectively was 100% and 99. 6%. There were four specific positions at G153A, T463A, C732G and T818C. The inter-specific genetic distance (0) of trL-trnF sequences was lower than intra-specific genetic distance (0. 004). P. ginseng can be distinguished from P. quinquefolius based on the phylogenetic tree. It is concluded that Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix can be authenticated by identification indices of sequence similarity, specific positions, genetic distance and phylogenetic tree. Index of specific positions based on trnL-trnF sequences is the most efficient index to authenticate Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix.


Assuntos
Cloroplastos , Genética , Código de Barras de DNA Taxonômico , Métodos , Panax , Classificação , Genética , Filogenia , Proteínas de Plantas , Genética , Rizoma , Classificação , Genética
3.
China Journal of Chinese Materia Medica ; (24): 4759-4762, 2014.
Artigo em Chinês | WPRIM | ID: wpr-341821

RESUMO

The fruit of Lycium ruthenicum is a common folk medicine in China. Now it is popular for its antioxidative effect and other medical functions. The adulterants of the herb confuse consumers. In order to identify a new adulterant of L. ruthenicum, a research was performed based on NCBI Nucleotide Database ITS Sequence, combined analysis of the origin and morphology of the adulterant to traceable varieties. Total genomic DNA was isolated from the materials, and nuclear DNA ITS sequences were amplified and sequenced; DNA fragments were collated and matched by using ContingExpress. Similarity identification of BLAST analysis was performed. Besides, the distribution of plant origin and morphology were considered to further identification and verification. Families and genera were identified by molecular identification method. The adulterant was identified as plant belonging to Berberis. Origin analysis narrowed the range of sample identification. Seven different kinds of plants in Berberis were potential sources of the sample. Adulterants variety was traced by morphological analysis. The united molecular identification-origin-morphology research proves to be a preceding way to medical herbs traceability with time-saving and economic advantages and the results showed the new adulterant of L. ruthenicum was B. kaschgarica. The main differences between B. kaschgarica and L. ruthenicum are as follows: in terms of the traits, the surface of B. kaschgarica is smooth and crispy, and that of L. ruthenicum is shrinkage, solid and hard. In microscopic characteristics, epicarp cells of B. aschgarica thickening like a string of beads, stone cells as the rectangle, and the stone cell walls of L. ruthenicum is wavy, obvious grain layer. In molecular sequences, the length of ITS sequence of B. kaschgarica is 606 bp, L. ruthenicum is 654 bp, the similarity of the two sequences is 53.32%.


Assuntos
Berberis , Classificação , Biologia Celular , Genética , China , Código de Barras de DNA Taxonômico , Métodos , DNA de Plantas , Química , Genética , DNA Espaçador Ribossômico , Química , Genética , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas , Padrões de Referência , Lycium , Classificação , Biologia Celular , Genética , Medicina Tradicional Chinesa , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA