Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 806-815, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878597

RESUMO

Yeast are comprised of diverse single-cell fungal species including budding yeast Saccharomyces cerevisiae and various nonconventional yeasts. Budding yeast is well known as an important industrial microorganism, which has been widely applied in various fields, such as biopharmaceutical and health industry, food, light industry and biofuels production. In the recent years, various yeast strains from different ecological environments have been isolated and characterized. Novel species have been continuously identified, and strains with diverse physiological characteristics such as stress resistance and production of bioactive compounds were selected, which proved abundant biodiversity of natural yeast resources. Genome mining of yeast strains, as well as multi-omics analyses (transcriptome, proteome and metabolome, etc.) can reveal diverse genetic diversity for strain engineering. The genetic resources including genes encoding various enzymes and regulatory proteins, promoters, and other elements, can be employed for development of robust strains. In addition to exploration of yeast natural diversity, phenotypes that are more suitable for industrial applications can be obtained by generation of a variety of genetic diversity through mutagenesis, laboratory adaptation, metabolic engineering, and synthetic biology design. The optimized genetic elements can be used to efficiently improve strain performance. Exploration of yeast biodiversity and genetic diversity can be employed to build efficient cell factories and produce biological enzymes, vaccines, various natural products as well as other valuable products. In this review, progress on yeast diversity is summarized, and the future prospects on efficient development and utilization of yeast biodiversity are proposed. The methods and schemes described in this review also provide a reference for exploration of diversity of other industrial microorganisms and development of efficient strains.


Assuntos
Biodiversidade , Biocombustíveis , Microbiologia Industrial , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Biologia Sintética
2.
Chinese Journal of Biotechnology ; (12): 801-805, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878596

RESUMO

Industrial microorganisms and their products are widely used in various fields such as industry, agriculture, and medicine, which play a pivotal role in economy. Efficient industrial strains are the key to improve production efficiency, and advanced fermentation technology as well as instrument platform is also important to develop microbial metabolic potential. In recent years, rapid development has been achieved in research of industrial microorganisms. Artificial intelligence, efficient genome-editing and synthetic biology technologies have been increasingly applied, and related industrial applications are being accomplished. In order to promote utilization of industrial microorganisms in biological manufacturing, we organized this special issue on innovation and breakthrough of industrial microorganisms. Progress including microbial strain diversity and metabolism, strain development technology, fermentation process optimization and scale-up, high-throughput droplet culture system, and applications of industrial microorganisms is summarized in this special issue, and prospects on future studies are proposed.


Assuntos
Inteligência Artificial , Fermentação , Microbiologia Industrial , Indústrias , Engenharia Metabólica , Biologia Sintética
3.
China Biotechnology ; (12)2006.
Artigo em Chinês | WPRIM | ID: wpr-686277

RESUMO

Yeast strains with improved ethanol yield are important for efficient bioconversion of lignocellulosic biomass for fuel ethanol.Candida shehatae CICC1766 was adapted to 4%(v/v)ethanol,and then subjected to UV mutagenesis.One respiration deficient mutant Rd-5 with improved xylose fermentation capability was selected.Protoplasts of Rd-5 were inactivated by UV treatment,followed by the PEG-mediated protoplast fusion with a Saccharomyces cerevisiae strain with good ethanol-fermenting capability.The xylose fermenting capability of the fusants was investigated,and the fusant F6 demonstrated good ethanol fermentation performance,producing 18.75g/L ethanol from 50g/L xylose with an ethanol yield of 0.375 or 73.4% of its theoretical value of 0.511.Comparing with its parent Candida shehatae strain,the ethanol yield of F6 was increased by 28%.

4.
China Biotechnology ; (12)2006.
Artigo em Chinês | WPRIM | ID: wpr-685507

RESUMO

During the dilute acid pretreatment of lignocellulosic materials such as corn stover, hemicellulose is hydrolyzed into monosaccharides, and meanwhile, toxic by-products are simultaneously generated, which may influence ethanol fermentation thereafter. Studies on the inhibitory effects of the by-products on ethanol fermentation are of practical use for further improvement of ethanol yield from lignocellulosic materials. Five by-products, including acetic acid, formic acid, vanillin, furfural and 5-hydroxymethylfurfural, were identified to be the main components in the hydrolysate of dilute acid pretreatment of local corn stover, which were added into the medium at different concentrations to study their impacts on the growth and ethanol fermentation of a recombinant xylose-utilizing yeast strain, S. cerevisiae 6508-127. The ethanol production was inhibited by formic acid and acetic acid to a lesser extent than that to the growth, and formic acid was shown to be much more toxic than acetic acid, showing severe inhibitory effects at the concentration of 1g/L, half of the concentration for acetic acid which showed remarkably negative effects on ethanol fermentation. Vanillin caused a much longer lag-phase in growth when the concentration was 2g/L, and the lag-phase was not obvious at lower concentrations. At the concentration of 6g/L, vanillin completely inhibited the fermentation as well as the cell growth. 5-Hydroxymethylfurfural was showed to remarkably inhibit ethanol production, but the biomass yield was higher by exogenous addition of 5-Hydroxymethylfurfural than control. Furfural at 0.5~1.5g/L inhibited the cell growth, but the ethanol yield was higher than that of the control experiment. It was also found that vanillin, furfural and 5-hydroxymethylfurfural could be assimilated and metabolized by S. cerevisiae 6508-127 under the experimental conditions.

5.
Chinese Journal of Biotechnology ; (12): 113-117, 2005.
Artigo em Chinês | WPRIM | ID: wpr-270138

RESUMO

A continuous ethanol fermentation system composed of four-stage tank fermentors in series and with a total working volume of 4000 mL was established. The first fermentor was designated as the seed fermentor and the others for ethanol fermentation. A self-flocculating yeast strain developed by protoplast fusion of Saccharomyces cerevisiae and Schizosaccharomyces pombe was applied. Two-stage corn powder enzymatic hydrolyzate containing reducing sugar 100 g/L, together with 2.0 g/L (NH4)2HPO4 and KH2PO4, was used as yeast seed culture medium and fed into the seed fermentor at the dilution rate of 0.017h (-1). Meanwhile, the hydrolyzate containing reducing sugar 220 g/L, added with 1.5 g/L (NH4)2HPO4 and 2.5 g/L KH2PO4, was used as ethanol fermentation substrate and fed into the second fermentor at the dilution rates of 0.017, 0.025, 0.033, 0.040 and 0.050 h(-1) (based on the total working volume of the three fermentors), respectively. The chemostat states on which all of the monitoring parameters, including residual sugar, ethanol and yeast cell biomass concentrations, were maintained relatively constant were observed for seed cultivation and ethanol fermentations when the fermentation system was operated at the dilution rates of 0.017, 0.025, 0.033 and 0.050 h(-1). Yeast cells were observed being partly immobilized because significant yeast cell biomass concentration differences between the broth out of and inside the fermentors were detected. Moreover, the oscillations of residual sugar, ethanol and yeast cell biomass concentrations were observed when the fermentation system was operated at the dilution rate of 0.040 h(-1). The broth containing more than 12% (V/V) ethanol and less than 0.11% (W/V) residual reducing sugar and 0.35% (W/V) residual total sugar was produced when the dilution rate was controlled at no more than 0.033 h(-1). The ethanol productivity was calculated to be 3.32(g x L(-1) x h(-1)) for the dilution rate of 0.033 h(-1), which increased nearly 100% compared with that for conventional ethanol fermentation technologies using freely suspended yeast cells.


Assuntos
Reatores Biológicos , Microbiologia , Carboidratos , Etanol , Metabolismo , Fermentação , Floculação , Saccharomyces cerevisiae , Metabolismo , Schizosaccharomyces , Metabolismo , Zea mays , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA