Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 1093-1101, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008938

RESUMO

Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors' laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.


Assuntos
Humanos , Algoritmos , Depressão/terapia , Música , Musicoterapia , Eletroencefalografia , Dispositivos Eletrônicos Vestíveis
2.
Journal of Biomedical Engineering ; (6): 1045-1052, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008933

RESUMO

This review article aims to explore the major challenges that the healthcare system is currently facing and propose a new paradigm shift that harnesses the potential of wearable devices and novel theoretical frameworks on health and disease. Lifestyle-induced diseases currently account for a significant portion of all healthcare spending, with this proportion projected to increase with population aging. Wearable devices have emerged as a key technology for implementing large-scale healthcare systems focused on disease prevention and management. Advancements in miniaturized sensors, system integration, the Internet of Things, artificial intelligence, 5G, and other technologies have enabled wearable devices to perform high-quality measurements comparable to medical devices. Through various physical, chemical, and biological sensors, wearable devices can continuously monitor physiological status information in a non-invasive or minimally invasive way, including electrocardiography, electroencephalography, respiration, blood oxygen, blood pressure, blood glucose, activity, and more. Furthermore, by combining concepts and methods from complex systems and nonlinear dynamics, we developed a novel theory of continuous dynamic physiological signal analysis-dynamical complexity. The results of dynamic signal analyses can provide crucial information for disease prevention, diagnosis, treatment, and management. Wearable devices can also serve as an important bridge connecting doctors and patients by tracking, storing, and sharing patient data with medical institutions, enabling remote or real-time health assessments of patients, and providing a basis for precision medicine and personalized treatment. Wearable devices have a promising future in the healthcare field and will be an important driving force for the transformation of the healthcare system, while also improving the health experience for individuals.


Assuntos
Humanos , Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA