Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 87-109, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011232

RESUMO

The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.

2.
Chinese Journal of Dermatology ; (12): 40-48, 2023.
Artigo em Chinês | WPRIM | ID: wpr-994437

RESUMO

Objective:To investigate differences in bacterial and fungal microbiome between infected nails and healthy nails among patients with onychomycosis.Methods:Nail scraping samples were collected from infected nails and healthy nails of 31 patients with onychomycosis, who visited Dalian Dermatosis Hospital from August 2020 to July 2021. The total DNA of nail microbiota was extracted, and the V3-V4 regions of the bacterial 16S rDNA gene and the fungal internal transcribed spacer (ITS) region were amplified and sequenced using Illumina technology. The USEARCH and mothur softwares were used for data cluster analysis to obtain the operational taxonomic units (OTUs) , Wilcoxon rank sum test was used to analyze α diversity, analysis of similarities (ANOSIM) was performed to analyze β diversity, linear discriminant analysis of effect size (LEfSe) was performed to evaluate the species difference.Results:Among the 31 patients with onychomycosis, 16 were males and 15 were females. According to the age, they were divided into young group (18 - 35 years old, 10 cases) , middle-aged group (36 - 60 years old, 11 cases) , and elderly group (over 60 years old, 10 cases) . As the α-diversity analysis revealed, the infected nail group showed significantly decreased Shannon index ( W = 290, P = 0.007) , but significantly increased Simpson index ( W = 663, P = 0.010) compared with the healthy nail group, suggesting that the diversity and evenness of bacterial communities were lower in the infected nail group than in the healthy nail group; however, there was no significant difference in the diversity of fungal communities between the infected nail group and healthy nail group. The β-diversity analysis based on the unweighted-UniFrac distance matrix showed no significant difference in the fungal or bacterial community composition between the infected nail group and healthy nail group (bacterial communities: R = 0.0052, P = 0.331; fungal communities: R = 0.0036, P = 0.337) ; the β-diversity analysis based on the weighted-UniFrac distance matrix showed significant differences in the abundance of bacterial and fungal communities between the two groups (both P = 0.001) . In terms of the species composition, the bacterial flora with significantly decreased abundance in the infected nail group compared with the healthy nail group included Bacteroidetes, Proteobacteria, Betaproteobacteria, Burkholderiales, Ralstonia, Sphingomonas and Streptococcus, while the abundance of Bacilli, Bacillales and Staphylococcus was significantly higher in the infected nail group than in the healthy nail group. Compared with the healthy nail group, the fungal flora with significantly increased abundance in the infected nail group included Eurotiomycetes, Onygenales, Leotiomycetes-ord-incertae-sedis, Arthrodermataceae, Periconia, Erysiphe, Tilletiopsis, Trichophyton, Erysiphe cruciferarum, Trichophyton rubrum, Malassezia sympodialis, while the abundance of Saccharomycetes, Saccharomycetales, Saccharomycetaceae, Dothioraceae, Candida and Alternaria was significantly lower in the infected nail group than in the healthy nail group. Conclusion:The diversity and abundance of bacterial communities significantly differed between infected nails and healthy nails among patients with onychomycosis, while only the abundance of fungal communities differed between the two groups, and perhaps there was correlations between some bacterial and fungal communities.

3.
Acta Pharmaceutica Sinica B ; (6): 2747-2764, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982877

RESUMO

Indolylarylsulfones (IASs) are classical HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a unique scaffold and possess potent antiviral activity. To address the high cytotoxicity and improve safety profiles of IASs, we introduced various sulfonamide groups linked by alkyl diamine chain to explore the entrance channel of non-nucleoside inhibitors binding pocket. 48 compounds were designed and synthesized to evaluate their anti-HIV-1 activities and reverse transcriptase inhibition activities. Especially, compound R10L4 was endowed with significant inhibitory activity towards wild-type HIV-1 (EC50(WT) = 0.007 μmol/L, SI = 30,930) as well as a panel of single-mutant strains exemplified by L100I (EC50 = 0.017 μmol/L, SI = 13,055), E138K (EC50 = 0.017 μmol/L, SI = 13,123) and Y181C (EC50 = 0.045 μmol/L, SI = 4753) which were superior to Nevirapine and Etravirine. Notably, R10L4 was characterized with significantly reduced cytotoxicity (CC50 = 216.51 μmol/L) and showed no remarkable in vivo toxic effects (acute and subacute toxicity). Moreover, the computer-based docking study was also employed to characterize the binding mode between R10L4 and HIV-1 RT. Additionally, R10L4 presented an acceptable pharmacokinetic profile. Collectively, these results deliver precious insights for next optimization and indicate that the sulfonamide IAS derivatives are promising NNRTIs for further development.

4.
Acta Pharmaceutica Sinica B ; (6): 581-599, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929274

RESUMO

Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.

5.
Acta Pharmaceutica Sinica B ; (6): 3035-3059, 2021.
Artigo em Inglês | WPRIM | ID: wpr-922741

RESUMO

Various boron-containing drugs have been approved for clinical use over the past two decades, and more are currently in clinical trials. The increasing interest in boron-containing compounds is due to their unique binding properties to biological targets; for example, boron substitution can be used to modulate biological activity, pharmacokinetic properties, and drug resistance. In this perspective, we aim to comprehensively review the current status of boron compounds in drug discovery, focusing especially on progress from 2015 to December 2020. We classify these compounds into groups showing anticancer, antibacterial, antiviral, antiparasitic and other activities, and discuss the biological targets associated with each activity, as well as potential future developments.

6.
Acta Pharmaceutica Sinica B ; (6): 878-894, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828837

RESUMO

In this report, a series of novel piperidine-substituted thiophene[3,2-]pyrimidine derivatives were designed to explore the hydrophobic channel of the non-nucleoside reverse transcriptase inhibitors binding pocket (NNIBP) by incorporating an aromatic moiety to the left wing of the lead . The newly synthesized compounds were evaluated for anti-HIV potency in MT-4 cells and inhibitory activity to HIV-1 reverse transcriptase (RT). Most of the synthesized compounds exhibited broad-spectrum activity toward wild-type and a wide range of HIV-1 strains carrying single non-nucleoside reverse transcriptase inhibitors (NNRTI)-resistant mutations. Especially, compound exhibited the most potent activity against wild-type and a panel of single mutations (L100I, K103N, Y181C, Y188L and E138K) with an EC ranging from 6.02 to 23.9 nmol/L, which were comparable to those of etravirine (ETR). Moreover, the RT inhibition activity, preliminary structure-activity relationship and molecular docking were also investigated. Furthermore, exhibited favorable pharmacokinetics (PK) profiles and with a bioavailability of 33.8%. Taken together, the results could provide valuable insights for further optimization and compound holds great promise as a potential drug candidate for the treatment of HIV-1 infection.

7.
Acta Pharmaceutica Sinica ; (12): 466-76, 2013.
Artigo em Chinês | WPRIM | ID: wpr-445605

RESUMO

Both reverse transcriptase (RT) and integrase (IN) play crucial roles in the life cycle of HIV-1, which are also key targets in the area of anti-HIV drug research. Reverse transcriptase inhibitors are involved in the most employed drugs used to treat AIDS patients and HIV-infected people, while one of the integrase inhibitors has already been approved by US FDA to appear on the market. Great achievement has been made in the research on both, separately. Recently, much more attention of medicinal chemistry researchers has been attracted to the strategies of multi-target drugs. Compounds with excellent potency against both HIV RT and IN, evidently defined as dual inhibitors targeting both enzymes, have been obtained through considerable significant exploration, which can be classified into two categories according to different strategies. Combinatorial chemistry approach together with high throughput screening methods and multi-target-based virtual screening strategy have been useful tools for identifying selective anti-HIV compounds for long times; Rational drug design based on pharmacophore combination has also led to remarkable results. In this paper, latest progress of both categories in the discovery and structural modification will be covered, with a view to contribute to the career of anti-HIV research.

8.
Acta Pharmaceutica Sinica ; (12): 1409-22, 2012.
Artigo em Chinês | WPRIM | ID: wpr-432991

RESUMO

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play an important roles in the prevention and treatment of AIDS. NNRTIs can specifically target at HIV reverse transcriptase (RT) and have the advantages of high potency and low toxicity, which make them a research focus for a long time. In the guidance of structural optimization strategies (bioisosterism, molecular hybridization and scaffold hopping) in medicinal chemistry, structural modification to lead compounds can be carried out to design new compounds with different levels, which will improve the efficiency of drug discovery and decrease the cost of drug development. It is an effective way to find new NNRTIs. In this review, we will expatiate on the application of different levels of structural optimization strategies in the NNRTIs structural modification with concrete examples.

9.
Acta Pharmaceutica Sinica ; (12): 684-93, 2010.
Artigo em Chinês | WPRIM | ID: wpr-382470

RESUMO

Human immunodeficiency virus type 1 (HIV-1) viral infectivity factor (Vif), one of the accessory proteins, which is a small basic phosphoprotein, is essential for viral replication and pathogenesis. The best well-characterized function of Vif is its ability to neutralize the host cell antiviral factor, apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3G (APOBEC3G), which makes the viral particles more infective. In addition, Vif can regulate the reverse transcription and the advanced stage of replication of the virus particle, as well as induce the termination of cell cycle at G2 stage and so on. The designed drug aimed directly at Vif can efficiently block the maturation and infectivity of HIV-1. In this review, the structure, function and especially the related inhibitors of Vif are reviewed.

10.
Acta Pharmaceutica Sinica ; (12): 205-14, 2010.
Artigo em Chinês | WPRIM | ID: wpr-382212

RESUMO

The late stages of the HIV-1 replication cycle are important to the overall replication cycle. During the late stages, HIV-1 replication undergoes the processes of assembly, release, and maturation, resulting in the production of a mature virus particle capable of infecting a new target cell. The structural protein Gag and its related gene (protein) play a central role in these pathways. The different regions of Gag worked in concert to drive production of a mature infectious particle through protein-protein, protein-RNA and protein-lipid interactions. The designed drug aimed directly at these stages can efficiently block the maturation and infectivity of HIV-1. In this article, the role of structural protein Gag and related gene (protein) in late stages of the HIV-1 replication cycle and related inhibitors is reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA