Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 743-752, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008895

RESUMO

Corona virus disease 2019 (COVID-19) is an acute respiratory infectious disease with strong contagiousness, strong variability, and long incubation period. The probability of misdiagnosis and missed diagnosis can be significantly decreased with the use of automatic segmentation of COVID-19 lesions based on computed tomography images, which helps doctors in rapid diagnosis and precise treatment. This paper introduced the level set generalized Dice loss function (LGDL) in conjunction with the level set segmentation method based on COVID-19 lesion segmentation network and proposed a dual-path COVID-19 lesion segmentation network (Dual-SAUNet++) to address the pain points such as the complex symptoms of COVID-19 and the blurred boundaries that are challenging to segment. LGDL is an adaptive weight joint loss obtained by combining the generalized Dice loss of the mask path and the mean square error of the level set path. On the test set, the model achieved Dice similarity coefficient of (87.81 ± 10.86)%, intersection over union of (79.20 ± 14.58)%, sensitivity of (94.18 ± 13.56)%, specificity of (99.83 ± 0.43)% and Hausdorff distance of 18.29 ± 31.48 mm. Studies indicated that Dual-SAUNet++ has a great anti-noise capability and it can segment multi-scale lesions while simultaneously focusing on their area and border information. The method proposed in this paper assists doctors in judging the severity of COVID-19 infection by accurately segmenting the lesion, and provides a reliable basis for subsequent clinical treatment.


Assuntos
Humanos , COVID-19/diagnóstico por imagem , Taxa Respiratória , Tomografia Computadorizada por Raios X
2.
Chinese Journal of Biotechnology ; (12): 2463-2473, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887812

RESUMO

The hydroponic culture test method was used to study the physiological and biochemical responses of Paulownia fortunei seedlings under Zn stress, Cd stress, and combined Zn and Cd stress as well as changes in the enrichment and transfer characteristics of heavy metals. Under single and combined heavy metal stress, the biomass, plant height, and peroxidase (POD) activity of P. fortunei decreased as the treatment concentration increased. Combined Zn and Cd affected adversely plant height and biomass. As the concentration of Zn increased when applied alone, the chlorophyll content and catalase (CAT) activity of P. fortunei first increased and then decreased, the superoxide dismutase (SOD) activity increased, and the aboveground malondialdehyde (MDA) content first decreased and then increased. As the concentration of Cd increased when applied alone, chlorophyll content and CAT activity increased, and SOD activity and aboveground MDA content first increased and then decreased. Under both Cd and Zn, the physiological response was more complex. Cd in the seedlings of P. fortunei was concentrated in the root. In contrast, Zn was concentrated in the upper part of the ground, and its transfer coefficient was greater than 1.00. Thus, the addition of Zn promotes the transfer of heavy metals to the above-ground portions of plants. Generally, P. fortunei can effectively promote ecological restoration under complex forms of heavy metal pollution.


Assuntos
Cádmio , Clorofila , Metais Pesados , Raízes de Plantas/química , Plântula , Poluentes do Solo , Estresse Fisiológico , Superóxido Dismutase , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA