Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Cancer Biotherapy ; (6): 1081-1086, 2020.
Artigo em Chinês | WPRIM | ID: wpr-829319

RESUMO

@#[Abstract] Objective: To investigate the effect of 18H12, a functional monoclonal antibody that can target gastric cancer stem cells, on the self-renewal and invasion ability of gastric cancer cells. Methods: The gastric cancer cell line PAMC-82 was used as cell model, the expression of ENO1 (enolase-1) on the membrane surface of its parental cells and enriched stem cells by sphere culture was detected by Flow cytometry. Flow cytometry was used to separate ENO1+ cells and ENO1- cells to detect their self-renewal ability and invasion ability. With the commercial ENO1 antigen and antibody as the samples, CoIP (co-immunoprecipitation) was used to verify whether 18H12 antibody targeting ENO1 could able to accurately recognize ENO1. After being treated with 18H12 for 12 h, 24 h and 48 h, the selfrenewal and invasion ability of PAMC-82 cells were detected by methylcellulose pelletization experiment and Transwell chamber assay, respectively. Results: Flow cytometry showed that the expression of ENO1 on the membrane surface of PAMC-82 sphere cells was significantly higher than that of its parental cells (P<0.01), so ENO1 could be a potential target for targeting gastric cancer stem cells. The self-renewal ability and invasion ability of the sorted ENO1+ cells were significantly stronger than those of the ENO1- cells and the parental cells (P<0.05 or P<0.01). 18H12 antibody could accurately recognize ENO1, which was consistent with the commercial antibody recognition band. 18H12 could significantly inhibit self-renewal ability and invasion ability of PAMC-82 cells (P<0.01). Conclusion: Monoclonal antibody 18H12 can significantly inhibit the self-renewal and invasion of gastric cancer stem cells and is expected to be a candidate antibody drug targeting gastric cancer stem cells.

2.
Journal of Pharmaceutical Analysis ; (6): 166-172, 2014.
Artigo em Chinês | WPRIM | ID: wpr-672111

RESUMO

A simple modification converts an electrospray ion source to an ambient-pressure helium plasma ionization source without the need of additional expensive hardware. Peaks for active ingredients were observed in the spectra recorded from intact pharmaceutical tablets placed in this source. A flow of heated nitrogen was used to thermally desorb analytes to gas phase. The desorption temperatures were sometimes as low as 50 1C. For example, negative-ion spectra recorded from an aspirin tablet showed peaks at m/z 137 (salicylate anion) and 179 (acetylsalicylate anion) which were absent in the background spectra. The overall ion intensity increased as the desorption gas temperature was elevated. Within the same acquisition experiment, both positive- and negative-ion signals for acetaminophen were recorded from volatiles emanating from Tylenol tablets by switching the polarity of the capillary back and forth. Moreover, different preparations of acetaminophen tablets could be distinguished by their ion-intensity thermograms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA