RESUMO
Objective:To study the changes in serum small molecule metabolites after brucella infection in humans using untargeted metabolomics methods, and screening representative biomarkers. Methods:A total of 109 serum samples collected from January 2019 to December 2021 at the Brucellosis Clinic of the Baotou Center for Disease Control and Prevention were divided into acute phase group ( n = 40), chronic phase group ( n = 35) of brucellosis, and healthy group ( n = 34) based on clinical diagnosis. Ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry technology was used to test serum samples and screen for differential metabolites. Receiver operating characteristic curve was used to evaluate the predictive ability of differential metabolites for brucellosis. Enriched pathways were screened using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to identify metabolic pathways significantly affected. Results:A total of 17 differential metabolites were screened between the acute phase group and the healthy group, and 12 differential metabolites were screened between the chronic phase group and the healthy group. There were a total of 5 differential metabolites (oleamide, linoleamide, stearamide, palmitoleic acid, α-linolenic acid) statistically significant among the three groups ( F = 16.84, 17.52, 14.31, 13.01, 20.76, P < 0.05). KEGG pathway analysis showed that the differential metabolites in the acute phase group were enriched in metabolic pathways such as ether lipid metabolism, glycerophosphate metabolism, sphingolipid signal and sphingolipid metabolism. The differential metabolites in the chronic phase group were enriched in metabolic pathways such as glycerophosphate metabolism, ether lipid metabolism, protein digestion and absorption metabolism. Conclusion:Untargeted metabolomics methods can screen out serum small molecule metabolites that undergo changes after brucella infection in the human body, including oleamide, linoleamide, stearamide, palmitoleic acid, α-linolenic acid can serve as potential biomarkers to distinguish brucellosis patients from healthy people.
RESUMO
Objective:To analyze the viral genome sequence of novel coronavirus infected persons in Baotou City, understand the mutation characteristics of novel coronavirus genome in the process of transmission among cases, and explore the transmission rule of novel coronavirus in the clustered populations.Methods:Nine throat swabs samples (No. 1 - 7, No. 9, and No. 10), two sputum samples (No. 8, No. 11, and No. 11 sample was from No. 10 case), and one surface smear sample (No.12, and No. 12 sample was from No. 10 case) were collected from 10 confirmed cases of novel coronavirus infection in Baotou City from January 25 to February 21, 2020. Samples 1 and 3 were from single cases, and the rest were from clustered cases. The virus genome was sequenced by metagenomic next-generation sequencing (mNGS), and single nucleotide polymorphism (SNP) mutation sites were screened by comparing with NC_045512, a reference strain of novel coronavirus. Combined with relevant epidemiological information, gene mutation, virus typing, and evolutionary traceability analysis were carried out.Results:The results of viral genome mNGS showed that 76 SNP mutation sites were detected in 12 samples compared with the reference strain NC_045512, including 3 (3.95%) transitions and 73 (96.05%) reversals. There were 19 (25.00%) synonymous mutations and 57 (75.00%) non-synonymous mutations. The analysis of nucleotide and amino acid variation sites showed that mutations were found at five sites (T2821C, C6548T, T16464C, G16858A and T251C) in all the clustered cases (cases 2, 4 - 10). In the single cases, sample 1 had mutations at C9245T and A15340T, and sample 3 had mutation at C13T. The virus typing analysis showed that the samples 1 and 3 belonged to the L type of novel coronavirus, while the rest belonged to the S type of novel coronavirus. The results of genomic evolutionary relationship analysis showed that all the samples could be divided into two branches. The branches of sample 1 and 3 belonged to single cases, and the rest belonged to family clustered cases.Conclusion:The genomic characteristics of the clustered cases of novel coronavirus infection in Baotou City are basically consistent with the epidemiological investigation results, and the transmission of the virus is mainly related to close contact and family gathering.