Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 632-649, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927733

RESUMO

The redox biosynthesis system has important applications in green biomanufacturing of chiral compounds. Formate dehydrogenase (FDH) catalyzes the oxidation of formate into carbon dioxide, which is associated with the reduction of NAD(P)+ into NAD(P)H. Due to this property, FDH is used as a crucial enzyme in the redox biosynthesis system for cofactor regeneration. Nevertheless, the application of natural FDH in industrial production is hampered by low catalytic efficiency, poor stability, and inefficient coenzyme utilization. This review summarized the structural characteristics and catalytic mechanism of FDH, as well as the advances in protein engineering of FDHs toward improved enzyme activity, catalytic efficiency, stability and coenzyme preference. The applications of using FDH as a coenzyme regeneration system for green biomanufacturing of chiral compounds were summarized.


Assuntos
Catálise , Coenzimas/metabolismo , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Engenharia de Proteínas
2.
Chinese Journal of Biotechnology ; (12): 1795-1807, 2009.
Artigo em Chinês | WPRIM | ID: wpr-336302

RESUMO

Nitriles are an important type of synthetic intermediates in the production of fine chemicals because of their easy preparations and versatile transformations. The traditional chemical conversion of nitriles to carboxylic acids and amides is feasible but it requires relatively harsh conditions of heat, acid or alkali. Nitrile converting enzymes (nitrilase, nitrile hydratase and amidase) which are used as biocatalyst for the production of fine chemicals have attracted substantial interest because of their ability to convert readily available nitriles into the corresponding higher value amides or acids under mild conditions with excellent chemo-, regio- and stereo-selectivities. Many nitrile converting enzymes have been explored and widely used for the production of fine chemicals. In this paper, various examples of biocatalytic synthesis of pharmaceuticals and their intermediates, agrochemicals and their intermediates, food and feed additives, and other fine chemicals are presented. In the near future, an increasing number of novel nitrile converting enzymes will be screened and their potential in the production of useful fine chemicals will be further exploited.


Assuntos
Amidas , Metabolismo , Amidoidrolases , Metabolismo , Aminoidrolases , Metabolismo , Ácidos Carboxílicos , Metabolismo , Indústria Química , Métodos , Hidroliases , Metabolismo , Nitrilas , Química
3.
Chinese Journal of Biotechnology ; (12): 1983-1988, 2009.
Artigo em Chinês | WPRIM | ID: wpr-336278

RESUMO

There is growing interest in biodiesel and this results in the accumulation of glycerol. The exploitation and application of glycerol has attracted more and more attention. In the current study, glycerol was biotransformed to produce 3-hydroxypropionaldehyde by genetic engineering bacteria. It is known that 3-hydroxypopionaldehyde has been widely used as an important intermediate for chemicals, effective antimicrobial agent, and fix agent for tissues. A pair of primers was designed on the basis of the sequence of both NH2-terminus and the amino acid sequence of glycerol dehydratase reported by NCBI, and a fragment about 1.6 kb was obtained by PCR amplification using the total genome DNA of Lactobacillus reuteri as template, then the fragment was cloned to the pMD18-T vector and sequenced. Two specific primers were designed according to the obtained sequence, and a fragment with length of 1674 bp was amplified using PCR with these two specific primers. Consequently, the resulting products were digested with EcoR I and Hind III and ligated using T4 DNA ligase to the pET28b vector digested with the same enzymes. The recombinant plasmid, named pET28b-dhaB, was transformed into E. coli BL21. The positive clones were induced with IPTG and the expression products were further analyzed by SDS-PAGE, indicating that protein with a molecule weight of around 65 kD was obtained. Furthermore, the glycerol dehydratase activity was evaluated and compared with the wild type strain as well.


Assuntos
Clonagem Molecular , Escherichia coli , Genética , Metabolismo , Gliceraldeído , Química , Metabolismo , Hidroliases , Genética , Limosilactobacillus reuteri , Genética , Propano , Química , Metabolismo , Proteínas Recombinantes , Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA