Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 938-949, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011005

RESUMO

Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.


Assuntos
Humanos , Salvia miltiorrhiza/metabolismo , Vias Biossintéticas , Quinonas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Chinese Journal of Biotechnology ; (12): 2265-2283, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981202

RESUMO

Natural plant-derived diterpenoids are a class of compounds with diverse structures and functions. These compounds are widely used in pharmaceuticals, cosmetics and food additives industries because of their pharmacological properties such as anticancer, anti-inflammatory and antibacterial activities. In recent years, with the gradual discovery of functional genes in the biosynthetic pathway of plant-derived diterpenoids and the development of synthetic biotechnology, great efforts have been made to construct a variety of diterpenoid microbial cell factories through metabolic engineering and synthetic biology, resulting in gram-level production of many compounds. This article summarizes the construction of plant-derived diterpenoid microbial cell factories through synthetic biotechnology, followed by introducing the metabolic engineering strategies applied to improve plant-derived diterpenoids production, with the aim to provide a reference for the construction of high-yield plant-derived diterpenoid microbial cell factories and the industrial production of diterpenoids.


Assuntos
Diterpenos/metabolismo , Biotecnologia , Engenharia Metabólica , Vias Biossintéticas/genética , Plantas/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA