Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental Neurobiology ; : 27-37, 2020.
Artigo | WPRIM | ID: wpr-832454

RESUMO

Autism spectrum disorder (ASD) is a developmental syndrome characterized by obvious drawbacks in sociality and communication. It has crucial significance to exactly discern the individuals with ASD and typical controls (TC). Previous imaging studies on ASD/TC identification have made remarkable progress in the exploration of objective as well as crucial biomarkers associated with ASD. However, glaring deficiency is manifested by the investigation on solely homogeneous and small datasets. Thus, we attempted to unveil some replicable and robust neural patterns of autism using a heterogeneous multi-site brain imaging dataset from ABIDE (Autism Brain Imaging Data Exchange). Experiments were carried out with an attention mechanism based on Extra-Trees algorithm, taking the study object of brain connectivity measured with the resting-state functional magnetic resonance imaging (fMRI) data of CC200 atlas. With cross-validation strategy, our proposed method resulted in a mean classification accuracy of 72.2% (sensitivity=68.6%, specificity=75.4%). It raised the precision of ASD prediction by about 2% and specificity by 3.2% in comparison with the most competitive reported effort. Connectivity analysis on the optimal model highlighted informative regions strongly involved in the social cognition as well as interaction, and manifested lower correlation between the anterior and posterior default mode network (DMN) in autistic individuals than controls. This observation is concordant with previous studies, which enables our proposed method to effectively identify the individuals with risk of ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA