Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Journal of Advanced Prosthodontics ; : 335-345, 2022.
Artigo em Inglês | WPRIM | ID: wpr-968634

RESUMO

PURPOSE@#. This in vitro study aimed to evaluate the surface characteristics of a full veneer crown fabricated chairside (CS) from a (Y, Nb)-TZP zirconia block in response to conventional zirconia grinding and polishing. @*MATERIALS AND METHODS@#. Zirconia crowns (n = 40) were first prepared and divided into two groups of materials: Labside (LS) and CS, after which each specimen went through a five-step grinding and polishing procedure. Following each surface treatment, surface characteristics were analyzed using confocal laser microscopy (CLSM), average surface roughness (Ra) values were processed from the profile data through Gaussian filtering, and X-ray diffraction pattern analysis was performed to evaluate the monoclinic (M) phase content. Then, a representative specimen was selected for field-emission scanning electron microscopy (FE-SEM), followed by a final analysis of the roughness and X-ray diffraction of the specimens using the independent t-test and repeated measures analysis of variance (RM-ANOVA). @*RESULTS@#. In every group, polishing significantly reduced the Ra values (P < .001).There was no significant difference in Ra between the polished state CS and LS.Furthermore, CLSM and FE-SEM investigations revealed that even though grain exposure was visible in CS specimens throughout the as-delivered and ground states, the exposure was reduced after polishing. Moreover, while no phase transformation was visible in the LS, phase transformation was visible in CS after every surface treatment, with the M phase content of the CS group showing a significant reduction after polishing (P < .001). CONCLUSION. Within the limits of this study, clinically acceptable level of surface finishing of (Y, Nb)-TZP can be achieved after conventional zirconia polishing sequence.

2.
The Journal of Advanced Prosthodontics ; : 147-154, 2018.
Artigo em Inglês | WPRIM | ID: wpr-742019

RESUMO

PURPOSE: This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS: 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness (Ra) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS: The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION: Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.


Assuntos
Animais , Camundongos , Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Cerâmica , Implantes Dentários , Expressão Gênica , Nióbio , Osteoblastos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA