Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 65-80, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971665

RESUMO

Acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had caused a global pandemic since 2019, and posed a serious threat to global health security. Traditional Chinese medicine (TCM) has played an indispensable role in the battle against the epidemic. Many components originated from TCMs were found to inhibit the production of SARS-CoV-2 3C-like protease (3CLpro) and papain-like protease (PLpro), which are two promising therapeutic targets to inhibit SARS-CoV-2. This study describes a systematic investigation of the roots and rhizomes of Sophora tonkinensis, which results in the characterization of 12 new flavonoids, including seven prenylated flavanones (1-7), one prenylated flavonol (8), two prenylated chalcones (9-10), one isoflavanone (11), and one isoflavan dimer (12), together with 43 known compounds (13-55). Their structures including the absolute configurations were elucidated by comprehensive analysis of MS, 1D and 2D NMR data, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Compounds 12 and 51 exhibited inhibitory effects against SARS-CoV-2 3CLpro with IC50 values of 34.89 and 19.88 μmol·L-1, repectively while compounds 9, 43 and 47 exhibited inhibitory effects against PLpro with IC50 values of 32.67, 79.38, and 16.74 μmol·L-1, respectively.


Assuntos
Flavonoides/química , SARS-CoV-2 , Rizoma , COVID-19 , Peptídeo Hidrolases , Antivirais/química
2.
Protein & Cell ; (12): 17-27, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971604

RESUMO

The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.


Assuntos
Humanos , Antivirais/química , COVID-19 , Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais
3.
Acta Pharmaceutica Sinica B ; (6): 2695-2709, 2022.
Artigo em Inglês | WPRIM | ID: wpr-939927

RESUMO

Cancer immunotherapy is impaired by the intrinsic and adaptive immune resistance. Herein, a bispecific prodrug nanoparticle was engineered for circumventing immune evasion of the tumor cells by targeting multiple immune resistance mechanisms. A disulfide bond-linked bispecific prodrug of NLG919 and JQ1 (namely NJ) was synthesized and self-assembled into a prodrug nanoparticle, which was subsequently coated with a photosensitizer-modified and tumor acidity-activatable diblock copolymer PHP for tumor-specific delivery of NJ. Upon tumor accumulation via passive tumor targeting, the polymeric shell was detached for facilitating intracellular uptake of the bispecific prodrug. NJ was then activated inside the tumor cells for releasing JQ1 and NLG919 via glutathione-mediated cleavage of the disulfide bond. JQ1 is a bromodomain-containing protein 4 inhibitor for abolishing interferon gamma-triggered expression of programmed death ligand 1. In contrast, NLG919 suppresses indoleamine-2,3-dioxygenase 1-mediated tryptophan consumption in the tumor microenvironment, which thus restores robust antitumor immune responses. Photodynamic therapy (PDT) was performed to elicit antitumor immunogenicity by triggering immunogenic cell death of the tumor cells. The combination of PDT and the bispecific prodrug nanoparticle might represent a novel strategy for blockading multiple immune evasion pathways and improving cancer immunotherapy.

4.
Acta Pharmaceutica Sinica ; (12): 14-24, 2013.
Artigo em Chinês | WPRIM | ID: wpr-445495

RESUMO

As an extension of the structure-based drug discovery, fragment-based drug discovery is matured increasingly, and plays an important role in drug development. Fragments in a small library, with lower molecular mass and high "ligand efficiency", are detected by SPR, MS, NMR, X-ray crystallography technologies and other biophysical methods. Then they are considered as starting points for chemical optimization with the guidance of structural biology methods to get good "drug-like" lead and candidate compounds. In this article, we reviewed the current progress of fragment-based drug discovery and detailed a number of examples to illustrate the novel strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA