Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Tuberculosis and Respiratory Diseases ; : 222-227, 2018.
Artigo em Inglês | WPRIM | ID: wpr-715740

RESUMO

BACKGROUND: Rifampicin (RFP) is one of the principal first-line drugs used in combination chemotherapies against Mycobacterium tuberculosis, and its use has greatly shortened the duration of chemotherapy for the successful treatment of drug-susceptible tuberculosis. Compensatory mutations have been identified in rpoC that restore the fitness of RFP-resistant M. tuberculosis strains with mutations in rpoB. To investigate rpoC mutation patterns, we analyzed 93 clinical M. tuberculosis isolates from patients in South Korea. METHODS: Drug-resistant mycobacterial isolates were cultured to determine their susceptibility to anti-tubercular agents. Mutations in rpoC were identified by sequencing and compared with the relevant wild-type DNA sequence. RESULTS: In total, 93 M. tuberculosis clinical isolates were successfully cultured and tested for drug susceptibilities. They included 75 drug-resistant tuberculosis species, of which 66 were RFP-resistant strains. rpoC mutations were found in 24 of the 66 RFP-resistant isolates (36.4%). Fifteen different types of mutations, including single mutations (22/24, 91.7%) and multiple mutations (2/24, 8.3%), were identified, and 12 of these mutations are reported for the first time in this study. The most frequent mutation involved a substitution at codon 452 (nt 1356) resulting in amino acid change F452L. CONCLUSION: Fifteen different types of mutations were identified and were predominantly single-nucleotide substitutions (91.7%). Mutations were found only in dual isoniazid- and RFP-resistant isolates of M. tuberculosis. No mutations were identified in any of the drug-susceptible strains.


Assuntos
Humanos , Sequência de Bases , Códon , Resistência a Múltiplos Medicamentos , Tratamento Farmacológico , Quimioterapia Combinada , Coreia (Geográfico) , Mycobacterium tuberculosis , Mycobacterium , Rifampina , Tuberculose , Tuberculose Resistente a Múltiplos Medicamentos
2.
Tuberculosis and Respiratory Diseases ; : 475-480, 2012.
Artigo em Inglês | WPRIM | ID: wpr-227212

RESUMO

BACKGROUND: Pyrazinamide (PZA) is an effective antitubercular drug that becomes toxic to Mycobacterium tuberculosis when converted to pyrazinoic acid by pyrazinamidase (PZase), encoded by mycobacterial pncA. A strong association was noted between the loss of PZase activity and PZA resistance. The causative organisms in extrapulmonary tuberculosis are rarely cultured and isolated. To detect pncA mutations in specimens from extrapulmonary tuberculosis as confirmative diagnosis of mycobacterial infection and alternative susceptibility test to PZA. METHODS: Specimens were collected from clinically proven extrapulmonary tuberculosis. pncA was sequenced and compared with wild-type pncA. RESULTS: pncA from 30 specimens from 23 donors were successfully amplified (56.6% in specimens, 59% in donors). Six mutations in pncA were detected (20.0% in amplified specimens, 26.1% in specimen donors) at nucleotide positions of 169, 248 and 419. The mutation at position 169 results in substitution of aspartic acid for histidine, a possible allelic variation of M. bovis that have intrinsic PZA resistance. The mutation at position 248 changes proline into arginine and that at position 419, arginine into histidine. CONCLUSION: DNA-based diagnosis using pncA may be simultaneously useful for the early diagnosis of mycobacterial infection and the rapid susceptibility to PZA in extrapulmonary tuberculosis. A potential implication of pncA allelic variation at 169 might be suggested as a rapid diagnostic test for M. bovis infection or Bacille Calmette-Guerin (BCG) reactivation.


Assuntos
Humanos , Amidoidrolases , Antituberculosos , Arginina , Ácido Aspártico , Testes Diagnósticos de Rotina , Diagnóstico Precoce , Histidina , Mycobacterium bovis , Mycobacterium tuberculosis , Prolina , Pirazinamida , Doadores de Tecidos , Tuberculose
3.
Tuberculosis and Respiratory Diseases ; : 128-138, 2007.
Artigo em Coreano | WPRIM | ID: wpr-139603

RESUMO

BACKGROUNDS: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. METHODS: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. RESULTS: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 (C-->T) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation (AAA-->AAC) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. CONCLUSIONS: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.


Assuntos
Animais , Substituição de Aminoácidos , Códon , DNA , Ectima Contagioso , Isoniazida , Mycobacterium tuberculosis , Mutação Puntual , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Tuberculose
4.
Tuberculosis and Respiratory Diseases ; : 128-138, 2007.
Artigo em Coreano | WPRIM | ID: wpr-139602

RESUMO

BACKGROUNDS: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. METHODS: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. RESULTS: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 (C-->T) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation (AAA-->AAC) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. CONCLUSIONS: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.


Assuntos
Animais , Substituição de Aminoácidos , Códon , DNA , Ectima Contagioso , Isoniazida , Mycobacterium tuberculosis , Mutação Puntual , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Tuberculose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA