Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Veterinary Science ; : 449-456, 2017.
Artigo em Inglês | WPRIM | ID: wpr-16840

RESUMO

The present study investigated the prevalence and mechanisms of fluoroquinolone (FQ)/quinolone (Q) resistance in Escherichia (E.) coli isolates from companion animals, pet-owners, and non-pet-owners. A total of 63 E. coli isolates were collected from 104 anal swab samples, and 27 nalidixic acid (NA)-resistant isolates were identified. Of those, 10 showed ciprofloxacin (CIP) resistance. A plasmid-mediated Q resistance gene was detected in one isolate. Increased efflux pump activity, as measured by organic solvent tolerance assay, was detected in 18 NA-resistant isolates (66.7%), but was not correlated with an increase in minimum inhibitory concentration (MIC). Target gene mutations in Q resistance-determining regions (QRDRs) were the main cause of (FQ)Q resistance in E. coli. Point mutations in QRDRs were detected in all NA-resistant isolates, and the number of mutations was strongly correlated with increased MIC (R = 0.878 for NA and 0.954 for CIP). All CIP-resistant isolates (n = 10) had double mutations in the gyrA gene, with additional mutations in parC and parE. Interestingly, (FQ)Q resistance mechanisms in isolates from companion animals were the same as those in humans. Therefore, prudent use of (FQ)Q in veterinary medicine is warranted to prevent the dissemination of (FQ)Q-resistant bacteria from animals to humans.


Assuntos
Animais , Humanos , Bactérias , Ciprofloxacina , Resistência Microbiana a Medicamentos , Escherichia coli , Escherichia , Fluoroquinolonas , Amigos , Testes de Sensibilidade Microbiana , Ácido Nalidíxico , Animais de Estimação , Mutação Puntual , Prevalência , Quinolonas , Medicina Veterinária
2.
Journal of Veterinary Science ; : 199-206, 2016.
Artigo em Inglês | WPRIM | ID: wpr-121452

RESUMO

Limited information is available regarding horse-associated antimicrobial resistant (AR) Escherichia (E.) coli. This study was designed to evaluate the frequency and characterize the pattern of AR E. coli from healthy horse-associated samples. A total of 143 E. coli (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Most of the AR E. coli harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR E. coli carried class 1 integrase gene (intI1), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR E. coli isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers.


Assuntos
Humanos , Bactérias , Resistência a Múltiplos Medicamentos , Escherichia coli , Escherichia , Genes vif , Cavalos , Integrases , Coreia (Geográfico) , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA