Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Journal of Peking University(Health Sciences) ; (6): 781-792, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1010131

RESUMO

OBJECTIVE@#To explore the potential mechanism of resistance to axitinib in clear cell renal cell carcinoma (ccRCC), with a view to expanding the understanding of axitinib resistance, facilitating the design of more specific treatment options, and improving the treatment effectiveness and survival prognosis of patients.@*METHODS@#By exploring the half maximum inhibitory concentration (IC50) of axitinib on ccRCC cell lines 786-O and Caki-1, cell lines resistant to axitinib were constructed by repeatedly stimulated with axitinib at this concentration for 30 cycles in vitro. Cell lines that were not treated by axitinib were sensitive cell lines. The phenotypic differences of cell proliferation and apoptosis levels between drug resistant and sensitive lines were tested. Genes that might be involved in the drug resistance process were screened from the differentially expressed genes that were co-upregulated in the two drug resistant lines by transcriptome sequencing. The expression level of the target gene in the drug resistant lines was verified by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). The expression differences of the target gene in ccRCC tumor tissues and adjacent tissues were analyzed in the Gene Expression Profiling Interactive Analysis (GEPIA) public database, and the impact of the target gene on the prognosis of ccRCC patients was analyzed in the Kaplan-Meier Plotter (K-M Plotter) database. After knocking down the target gene in the drug resistant lines using RNA interference by lentivirus vector, the phenotypic differences of the cell lines were tested again. WB was used to detect the levels of apoptosis-related proteins in the different treated cell lines to find molecular pathways that might lead to drug resistance.@*RESULTS@#Cell lines 786-O-R and Caki-1-R resistant to axitinib were successfully constructed in vitro, and their IC50 were significantly higher than those of the sensitive cell lines (10.99 μmol/L, P < 0.01; 11.96 μmol/L, P < 0.01, respectively). Cell counting kit-8 (CCK-8) assay, colony formation, and 5-ethynyl-2 '-deoxyuridine (EdU) assay showed that compared with the sensitive lines, the proliferative ability of the resistant lines decreased, but apoptosis staining showed a significant decrease in the level of cell apoptosis of the resistant lines (P < 0.01). Although resistant to axitinib, the resistant lines had no obvious new replicated cells in the environment of 20 μmol/L axitinib. Nuclear protein 1 (NUPR1) gene was screened by transcriptome sequencing, and its RNA (P < 0.0001) and protein expression levels significantly increased in the resistant lines. Database analysis showed that NUPR1 was significantly overexpressed in ccRCC tumor tissue (P < 0.05); the ccRCC patients with higher expression ofNUPR1had a worse survival prognosis (P < 0.001). Apoptosis staining results showed that knockdown ofNUPR1inhibited the anti-apoptotic ability of the resistant lines to axitinib (786-O, P < 0.01; Caki-1, P < 0.05). WB results showed that knocking downNUPR1decreased the protein level of B-cell lymphoma-2 (BCL2), increased the protein level of BCL2-associated X protein (BAX), decreased the protein level of pro-caspase3, and increased the level of cleaved-caspase3 in the resistant lines after being treated with axitinib.@*CONCLUSION@#ccRCC cell lines reduce apoptosis through theNUPR1 -BAX/ BCL2 -caspase3 pathway, which is involved in the process of resistance to axitinib.


Assuntos
Humanos , Carcinoma de Células Renais/metabolismo , Axitinibe/farmacologia , Neoplasias Renais/metabolismo , Proteína X Associada a bcl-2 , Proteínas Nucleares , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
2.
Biomedical and Environmental Sciences ; (12): 616-622, 2021.
Artigo em Inglês | WPRIM | ID: wpr-887737

RESUMO

Objective@#To evaluate multidrug resistant loop-mediated isothermal amplification (MDR-LAMP) assay for the early diagnosis of multidrug-resistant tuberculosis and to compare the mutation patterns associated with the @*Methods@#MDR-LAMP assay was evaluated using 100 @*Results@#The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MDR-LAMP were 85.5%, 93.6%, 96.7%, and 74.4% for the detection of resistance to isoniazid and rifampicin, respectively, and 80.5%, 92.3%, 98.6%, and 41.4% for the detection of @*Conclusion@#MDR-LAMP is a rapid and accessible assay for the laboratory identification of rifampicin and isoniazid resistance of


Assuntos
Antituberculosos , Proteínas de Bactérias/genética , Catalase/genética , DNA Bacteriano/análise , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Isoniazida , Técnicas de Diagnóstico Molecular/métodos , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Oxirredutases/genética , Fenótipo , Rifampina , Sequenciamento Completo do Genoma
3.
Journal of Peking University(Health Sciences) ; (6): 615-622, 2019.
Artigo em Chinês | WPRIM | ID: wpr-941858

RESUMO

OBJECTIVE@#To construct the prognostic model and identify the prognostic biomarkers based on long non-coding RNA (lncRNA) in bladder cancer.@*METHODS@#The lncRNA expression data and corresponding clinical data of bladder cancer were collected from The Cancer Genome Atlas (TCGA) database. The software Perl and R, and R packages were used for data integration, extraction, analysis and visualization. Detailly, R package "edgeR" was utilized to screen differentially expressed lncRNA in bladder cancer tissues compared with the normal bladder samples. The univariate Cox regression and the least absolute shrinkage and selection operator (Lasso) regression were performed to identify key lncRNA that were utilized to construct the prognostic model by the multivariate Cox regression. According to the median value of the risk score, all patients were divided into the high-risk group and low-risk group to perform the Kaplan-Meier (K-M) survival curves, receiver operating characteristic (ROC) curve and C-index, estimating the prognostic power of the prognostic model. In addition, the hazard ratio (HR) and 95% confidence interval (CI) of each key lncRNA were also calculated by the multivariate Cox regression. Moreover, we performed the K-M survival analysis for each significant key lncRNA from the result of the multivariate Cox regression.@*RESULTS@#A total of 691 lncRNA were identified as differentially expressed lncRNA, and 35 lncRNA signatures were initially considered associated with the prognosis of bladder cancer, where in 23 lncRNA were identified as key lncRNA associated with the prognosis. The overall survival time in years of the low-risk group was obviously longer than that of the high-risk group [(2.85±2.72) years vs. (1.58±1.51) years, P<0.001]. The area under the ROC curve (AUC) was 0.813 (3-year survival) and 0.778 (5-year survival) respectively, and the C-index was 0.73. In addition, HR and 95%CI of each key lncRNA were calculated by the multivariate Cox regression and 11 lncRNA were significant. Furthermore, K-M survival analysis revealed the independent prognostic value of 3 lncRNA, including AL589765.1 (P=0.004), AC023824.1 (P=0.022)and PKN2-AS1 (P=0.016).@*CONCLUSION@#The present study successfully constructed the prognostic model based on the expression level of 23 lncRNA and finally identified one protective prognostic biomarker AL589765.1, and two adverse prognostic biomarkers including AC023824.1 and PKN2-AS1 in bladder cancer.


Assuntos
Humanos , Biomarcadores Tumorais , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Prognóstico , RNA Longo não Codificante , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA