Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Journal of Biomedical Engineering ; (6): 288-295, 2020.
Artigo em Chinês | WPRIM | ID: wpr-828168

RESUMO

Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and : coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet- : coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the : coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio : and : . The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet- : coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.


Assuntos
Adulto , Humanos , Algoritmos , Eletromiografia , Movimento , Contração Muscular , Músculo Esquelético , Fisiologia , Amplitude de Movimento Articular
2.
Journal of Biomedical Engineering ; (6): 720-727, 2019.
Artigo em Chinês | WPRIM | ID: wpr-774149

RESUMO

To better analyze the problem of abnormal neuromuscular coupling related to motor dysfunction for stroke patients, the functional coupling of the multichannel electromyography (EMG) were studied and the difference between stroke patients and healthy subjects were further analyzed to explore the pathological mechanism of motor dysfunction after stroke. Firstly, the cross-frequency coherence (CFC) analysis and non-negative matrix factorization (NMF) were combined to construct a CFC-NMF model to study the linear coupling relationship in bands and the nonlinear coupling characteristics in different frequency ratios during elbow flexion and extension movement. Furthermore, the significant coherent area and sum of cross-frequency coherence were respectively calculated to quantitatively describe the intermuscular linear and nonlinear coupling characteristics. The results showed that the linear coupling relationship between multichannel muscles was different in frequency bands and the overall coupling was stronger in low frequency band. The linear coupling strength of the stroke patients was lower than that of the healthy subjects in different frequency bands especially in beta and gamma bands. For the nonlinear coupling, the intermuscular coupling strength of stroke patients in different frequency ratios was significantly lower than that of the healthy subjects, and the coupling strength in the frequency ratio 1∶2 was higher than that in the frequency ratio 1∶3. This method can provide a theoretical basis for exploring the intermuscular coupling mechanism of patients with motor dysfunction.


Assuntos
Humanos , Estudos de Casos e Controles , Eletromiografia , Músculo Esquelético , Acidente Vascular Cerebral , Reabilitação do Acidente Vascular Cerebral
3.
Journal of Biomedical Engineering ; (6): 795-801, 2015.
Artigo em Chinês | WPRIM | ID: wpr-359566

RESUMO

To quantitatively evaluate the upper-limb spasticity of stroke patients in recovery stage, the relationship between surface electromyography (sEMG) characteristic indexes from biceps brachii and triceps brachii and the spasticity were explored, which provides the electrophysiological basis for clinical rehabilitation. Ten patients with spasticity after stroke were selected to be estimated by modified Ashworth (MAS) assessment and a passive elbow sinusoidal motion experiment was carried out. At the same time, the sEMG of biceps and triceps were recorded. The results shows that the reflex electromyographic threshold could reflect the physiological mechanism of spasticity and had significant correlation with MAS scale which showed that sEMG could be prosperous for the clinical quantitative evaluation of spasticity of stroke patients.


Assuntos
Humanos , Eletromiografia , Espasticidade Muscular , Músculo Esquelético , Acidente Vascular Cerebral
4.
Journal of Biomedical Engineering ; (6): 971-977, 2014.
Artigo em Chinês | WPRIM | ID: wpr-234474

RESUMO

To better evaluate neuromuscular function of patients with stroke related motor dysfunction, we proposed an effective corticomuscular coherence analysis and coherent significant judgment method. Firstly, the related functional frequency bands in the electroencephalogram (EEG) were extracted via wavelet decomposition. Secondly, coherence were analysed between surface electromyography (sEMG) and sub-bands extracted from EEG. Further more, a coherent significant indicator was defined to quantitatively describe the similarity in certain frequency domain and phase lock activity between EEG and sEMG. Through the analysis of corticomuscular coherence during knee flexion-extension of stroke patients and healthy controls, we found that the stroke patients exhibited significantly lower gamma-band corticomuscular coherence in performing the task with their affected leg, and there was no statistically significant difference between their unaffected lag and the healthy controls, but with the rehabilitation training, the bilateral difference of corticomuscular coherence in patients decreased gradually.


Assuntos
Humanos , Estudos de Casos e Controles , Eletroencefalografia , Eletromiografia , Terapia por Exercício , Joelho , Fisiologia , Músculo Esquelético , Fisiologia , Amplitude de Movimento Articular , Reabilitação do Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA