Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Critical Care Medicine ; (12): 890-896, 2022.
Artigo em Chinês | WPRIM | ID: wpr-956072

RESUMO

Mitophagy is the selective degradation of damaged mitochondria, and it is of great significance to maintain the normal quantity and quality of mitochondria to ensure cell homeostasis and survival. Necroptosis is a type of programmed cell necrosis that can be induced by excessive mitophagy. Reactive oxygen species (ROS) are produced mainly by mitochondria and can damage mitochondria. Hyperoxic acute lung injury (HALI) is a serious complication of clinical oxygen therapy, and its pathogenesis is not clear. Existing studies have shown that mitophagy and necroptosis are involved in the occurrence of HALI. There are many mechanisms regulating mitophagy and necroptosis, including tumor necrosis factor-α (TNF-α), E3 ubiquitin protein ligase (PINK1/Parkin) protein pathway encoded by PTEN-induced kinase 1/PARK2 gene, phosphoglycerate mutase 5 (PGAM5), etc. PGAM5 has been proved to be a key factor linking mitophagy and necroptosis. Previous studies of our team found that the mechanism of microRNA-21-5p (miR-21-5p) alleviating HALI was related to its pGAM5-mediated inhibition of mitophagy, but the mechanism of PGAM5-mediated mitophagy and necroptosis remains unclear. Therefore, this paper reviews the targets of PGAM5-mediated mitophagy and necroptosis, in order to find clues of lung protection of pGAM5-mediated mitophagy and necroptosis in HALI, and provide theoretical basis for subsequent basic research.

2.
Chinese Critical Care Medicine ; (12): 633-637, 2021.
Artigo em Chinês | WPRIM | ID: wpr-909375

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by the destruction of the barrier function of alveolar epithelial cells and capillary endothelial cells and the recruitment of inflammatory cells, which leads to alveolar and interstitial edema, hyaline membrane formation and inflammatory infiltration of the lungs, etc. The mechanism is not completely defined. The current treatment plan focuses on comprehensive treatments such as ventilator support treatment, fluid management, and nutritional support, but the prognosis is still poor. Studies have shown that extracellular vesicle microRNA (miRNA) from different sources participate in regulating the function of epithelial cells, endothelial cells and phagocytes in different ways, thus aggravating or improving ALI, and have diagnostic, differential diagnosis and the therapeutic value. In this article, the mechanism, diagnostic and differerntial value of extracellular vesicle miRNA from different sources in ALI and the therapy of extracellular vesicle miRNA from stem cell in ALI are reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA