Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Occupational Medicine ; (6): 127-132, 2023.
Artigo em Chinês | WPRIM | ID: wpr-996535

RESUMO

Objective: To investigate the specificity of endogenous metabolic profile in plasma of patients with occupational acute methyl acetate poisoning using non-targeted metabolomics. Methods: A total of six patients with occupational acute methyl acetate poisoning were selected as the poisoning group, while 10 healthy workers without occupational exposure history of chemical hazards in the same industry were selected as the control group using the judgment sampling method. Metabolites in patient plasma of the two groups were detected using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, and non-targeted metabolomics analysis was performed. Principal component analysis and partial least squares discriminant analysis were used to identify differential metabolites and analyze their metabolic pathways. Results: There were significant differences in metabolite profiles in patient plasma between poisoning group and control group. A total of 195 differentially expressed metabolites were screened in plasma of patients in poisoning group, including 119 upregulated and 76 downregulated metabolites. Lipid substances (lipids and lipid-like molecules) accounted for the highest proportion (21.5%). The differential metabolites of poisoning group were related to folate biosynthesis, amino acid metabolism, pyrimidine metabolism, sphingolipid biosynthesis and other metabolic pathways in plasma compared with the control group (all P<0.05). Conclusion: Occupational acute methyl acetate poisoning affects metabolism of the body. The folic acid biosynthesis, amino acid and lipid metabolism and other pathways may be involved in the occurrence and development of poisoning.

2.
China Occupational Medicine ; (6): 104-109, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988929

RESUMO

Early diagnosis of pulmonary diseases is of great significance for their prevention and treatment. Serum Krebs von den Lungen-6 (KL-6) assay can reflect the damage degree of alveolar epithelium and stromal tissue, and is simple, non-invasive and low-cost. Pervious study showed that the serum KL-6 level was higher in patients with various interstitial lung diseases (e.g. idiopathic pulmonary fibrosis and connective tissue disease, primary Sjögren's syndrome, rheumatoid arthritis, idiopathic inflammatory myopathy and systemic sclerosis combined with interstitial lung disease), non-small cell lung cancer, various pneumonias and chronic obstructive pulmonary disease compared to healthy controls. Therefore, serum KL-6 has good sensitivity and specificity for the early diagnosis of these diseases. Occupational pneumoconiosis is an interstitial lung disease with a well-established etiology. Pervious study has shown that serum KL-6 level was higher in patients with occupational silicosis, occupational asbestosis, and dust-exposed workers compared to healthy controls. However, due to the limited sample size and the inconsistent findings on different studies, further research is needed to study the role of serum KL-6 in the early diagnosis of pneumoconiosis. Future studies should increase the sample size, improve the detection methods for serum KL-6, explore its feasibility as an early diagnostic biomarker for occupational pulmonary diseases, and investigate the efficacy andvalue of its combined application with other biomarkers in the early diagnosis of various pulmonary diseases, including occupational lung diseases, to fully exploit its predictive role in pulmonary diseases.

3.
China Occupational Medicine ; (6): 386-393, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1003872

RESUMO

Objective To detect and analyze the susceptibility genes of methyl acetate poisoning in patients by whole exome sequencing. Methods Two patients with occupational acute severe methyl acetate poisoning and their first-degree relatives who work in the same occupation and position with similar working hours were selected as the research subjects by judgment sampling method. Peripheral blood was collected for whole exome sequencing. The sequencing data was compared with the public genome database to screen the mutation sites and find out the gene sites related to methyl acetate poisoning. The suspected pathogenic mutation genes were annotated and interpreted. Results The results of whole exome sequencing showed that there were 40 differential genes between the patients with methyl acetate poisoning and their first-degree relatives, including 80 single nucleotide polymorphisms and eight Indel with specific marker sequence index. Among these, the genes with strong correlation were carboxyesterase 1 (CES1) and mucin (MUC) 5B. The CES1 gene loci c.248C>T (p.Ser83Leu) heterozygous mutations, MUC5B gene loci c.6635C>T (p.Thr2212Met) and c.7685C>T (p.Thr2562Met) heterozygous mutations in patients with methyl acetate poisoning were detected. They were missense mutations. By constructing a protein-protein interaction network, a total of 11 pairs of interactions with high levels of evidence were identified, involving genes such as lysine methyltransferase 2C, HECT and RLD domains containing E3 ubiquitin protein ligase 2, neutrophil cytoplasmic factor 1, nicotinamide adenine dinucleotide phosphate oxidase 3, C-terminal binding protein 2, zinc finger protein 717, FSHD region gene 2 family member C, FSHD region gene 1, MUC4, MUC6, MUC5B, and MUC12. Conclusion The polymorphism of CES1 and MUC5B genes may be related to the occurrence and development of methyl acetate poisoning in patients.

4.
China Occupational Medicine ; (6): 361-369, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1003869

RESUMO

Objective To explore the mechanism of action of curcumin in the treatment of silicosis by network pharmacology combined with molecular docking technology. Methods The targets prediction network of curcumin in treating silicosis was established based on the collection of targets of curcumin and silicosis in multiple databases, cross-targets were submitted to the STRING database, and their connectivity was analyzed by Cytoscape software. Gene ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the top 20 genes. The molecular docking was performed on the key targets to study the mechanism of action of curcumin in treating silicosis. Results A total of 311 targets related to curcumin, 270 targets related to silicosis, and 74 cross-targets were obtained from the databases. GO function analysis revealed 2 665 related pathways, and KEGG pathway enrichment analysis revealed 188 related pathways. Molecular docking results showed that curcumin had good binding ability with the targets of mitogen-activated protein kinase 3 (MAPK3), interleukin (IL) 6, serine/threonine kinase 1 (AKT1), vascular endothelial growth factor A (VEGFA), signal transducer and activator of transcription 3, albumin, Jun proto-oncogene, tumor necrosis factor (TNF), IL1B, tumor protein p53, C-C motif chemokine ligand 2 and fibronectin 1. Conclusion The therapeutical effects of curcumin on silicosis were implemented through multi-targets and multi-pathways. Curcumin may play a role in the treatment of silicosis by binding to the core targets MAPK3, IL6, AKT1, VEGFA and TNF and regulating the MAPK, IL6, TNF, phosphatidylinositol 3-kinase/protein kinase B and VEGF signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA