Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Contemporary Pediatrics ; (12): 230-235, 2018.
Artigo em Chinês | WPRIM | ID: wpr-300358

RESUMO

<p><b>OBJECTIVE</b>To investigate the protective effect of prostaglandin E1 (PGE-1) against brain injury induced by hyperoxia in neonatal rats and observe the changes in the expression of glucose-regulated protein 78 (GRP78) and cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), and to provide a theoretical basis for the clinical application of PGE-1 in the treatment of neonatal brain injury induced by hyperoxia.</p><p><b>METHODS</b>Sixty neonatal Wistar rats were randomly divided into air control group, hyperoxic brain injury model group, and hyperoxic brain injury+PGE-1 group. All rats except those in the air control group were treated to establish a hyperoxic brain injury model. From the first day of modeling, the rats in the hyperoxia brain injury+PGE-1 group were intraperitoneally injected with PGE-1 2 μg/kg daily for 7 consecutive days, while the other two groups were treated with normal saline instead. The water content of brain tissue was measured; the pathological changes of brain tissue were evaluated by hematoxylin-eosin staining; the apoptosis of brain cells was assessed by nuclear staining combined with TUNEL staining; the protein expression of GRP78 and CHOP in brain tissue was measured by Western blot.</p><p><b>RESULTS</b>The water content of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the water content of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The pathological section of brain tissue showed inflammatory cell infiltration and mild cerebrovascular edema in the brain parenchyma in the hyperoxic brain injury model group; the periparenchymal inflammation and edema in the hyperoxic brain injury+PGE-1 group were milder than those in the hyperoxic brain injury model group. The apoptosis index of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the apoptosis index of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The protein expression of GRP78 and CHOP in brain tissue was significantly higher in the hyperoxic brain injury model group than in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the protein expression of GRP78 and CHOP was significantly higher in the hyperoxic brain injury+PGE-1 group than in the air control group (P<0.05).</p><p><b>CONCLUSIONS</b>PGE-1 has a protective effect against hyperoxia-induced brain injury in neonatal rats, which may be related to the inhibition of cell apoptosis by down-regulating the expression of GRP78 and CHOP.</p>


Assuntos
Animais , Ratos , Alprostadil , Usos Terapêuticos , Animais Recém-Nascidos , Apoptose , Encéfalo , Patologia , Lesões Encefálicas , Metabolismo , Patologia , Proteínas de Choque Térmico , Hiperóxia , Fármacos Neuroprotetores , Usos Terapêuticos , Ratos Wistar , Fator de Transcrição CHOP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA