RESUMO
We investigated dietary effects of green tea powder (GTP) on plasma lipids, platelet aggregation, hemolysis, plasma TBARS, and liver enzymes. Thirty one volunteer diving women living on Jeju island consumed 4 g green tea powder daily for a period of four weeks and data for the study subjects were analyzed on the basis of diagnostic criteria for blood pressure (BP)(> or = 140/90 mmHg), plasma total cholesterol (TC)(> or = 200 mg/dL), and triglyceride (TG)(> or = 150mg/dL). Subjects with high BP had significantly higher TC and TG than those with normal BP. Subjects with higher TC had higher TG, and those with higher TG had lower HDL cholesterol. Platelet aggregation in the initial slope was significantly higher in subjects with normal BP, normal TC, or normal TG than their counterparts in high BP, TC, and TG. HDL cholesterol after GTP intake increased only in subject groups with normal BP, normal TC, or normal TG, and plasma TG after GTP intake decreased only in groups with higher BP, higher TG, or higher TC. Plasma TC and TG in subjects with normal BP increased after GTP intake. GTP intake caused a decrease in the initial slope of platelet aggregation in all subject groups with little effect on maximum aggregation. Total bilirubin showed a significant increase and GOT increased in all subject groups after GTP intake. Beneficial effects of short term intake of green tea powder might differ depending on the subject conditions in terms of blood pressure, plasma lipids, and other cardiovascular conditions. However, with the hypolipidemic, antithrombotic, and antioxidant actions of its bioactive flavonoids, long term usage of GTP or brewed green tea may provide preventive effects against cardiovascular disease.
Assuntos
Feminino , Humanos , Bilirrubina , Plaquetas , Pressão Sanguínea , Doenças Cardiovasculares , Colesterol , HDL-Colesterol , Mergulho , Flavonoides , Guanosina Trifosfato , Hemólise , Fígado , Plasma , Agregação Plaquetária , Chá , Substâncias Reativas com Ácido TiobarbitúricoRESUMO
This study was conducted to investigate the hypocholesterolemic effect of simvastatin (30 mg/kg BW) and antioxidant effect of coenzyme Q10 (CoQ10, 15 mg/kg BW) or green tea (5%) on erythrocyte Na leak, platelet aggregation and TBARS production in hypercholesterolemic rats treated with statin. Food efficiency ratio (FER, ADG/ADFI) was decreased in statin group and increased in green tea group, and the difference between these two groups was significant (p<0.05). Plasma total cholesterol was somewhat increased in all groups with statin compared with control. Plasma triglyceride was decreased in statin group and increased in groups of CoQ10 and green tea, and the difference between groups of statin and green tea was significant (p<0.05). Liver total cholesterol was not different between the control and statin group, but was significantly decreased in the group with green tea compared with other groups (p<0.05). Liver triglyceride was decreased in groups of statin and green tea compared with the control, and the difference between groups of the control and green tea was significant (p<0.05). Platelet aggregation of both the initial slope and the maximum was not significantly different, but the group with green tea tended to be higher in initial slope and lower in the maximum. Intracellular Na of group with green tea was significantly higher than the control or statin group (p<0.05). Na leak in intact cells was significantly decreased in the statin group compared with the control (p<0.05). Na leak in AAPH treated cells was also significantly reduced in the statin group compared with groups of the control and CoQ10 (p<0.05). TBARS production in platelet rich plasma was significantly decreased in the groups with CoQ10 and green tea compared with the control and statin groups (p<0.05). TBARS of liver was significantly decreased in the group with green tea compared with the statin group (p<0.05). In the present study, even a high dose of statin did not show a cholesterol lowering effect, therefore depletion of CoQ10 following statin treatment in rats is not clear. More clinical studies are needed for therapeutic use of CoQ10 as an antioxidant in prevention of degenerative diseases independent of statin therapy.