Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Anatomy & Cell Biology ; : 199-205, 2016.
Artigo em Inglês | WPRIM | ID: wpr-105517

RESUMO

Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear. To understand the role of TGF-β/BMP signaling in odontoblast differentiation and dentin formation, we generated mice with conditional ablation of Smad4, a key intracellular mediator of TGF-β/BMP signaling, using Osr2 or OC-Cre mice. Here we found the molars of Osr2(Cre)Smad4 mutant mice exhibited impaired odontoblast differentiation, and normal dentin was replaced by ectopic bone-like structure. In Osr2(Cre)Smad4 mutant mice, cell polarity of odontoblast was lost, and the thickness of crown dentin was decreased in later stage compared to wild type. Moreover, the root dentin was also impaired and showed ectopic bone-like structure similar to Osr2(Cre)Smad4 mutant mice. Taken together, our results suggest that Smad4-dependent TGF-β/BMP signaling plays a critical role in odontoblast differentiation and dentin formation during tooth development.


Assuntos
Animais , Camundongos , Polaridade Celular , Coroas , Esmalte Dentário , Papila Dentária , Dentina , Dentinogênese , Epitélio , Mineradores , Dente Molar , Odontoblastos , Dente
2.
Journal of Dental Hygiene Science ; (6): 401-408, 2016.
Artigo em Coreano | WPRIM | ID: wpr-650168

RESUMO

Periodontal disease is one of the major dental diseases. Currently, various methods are used for healing and successful regeneration of periodontal tissue damaged by periodontal disease. The periodontal ligament and alveolar bone have received considerable interest for use in periodontal tissue regeneration and induction. However, as the functions of the factors required for tooth attachment and key regulatory factors for periodontal tissue regeneration in the cementum have recently been identified, interest in cementum formation and regeneration has increased. Dental cementum forms in the late phase of tooth development because of the reciprocal regulatory interaction between cervical loop epithelial cells and surrounding mesenchymal cells, which is regulated by various gene signaling networks. Many attempts have been made to understand the regulatory factors and cellular and molecular mechanisms associated with new cementum formation. In this paper, we reviewed the study outcomes to date on the regulatory factors that induce cementum formation and regeneration, focusing on understanding the roles and functions of Wnt signaling in the regulation of cementum formation. In addition, we aimed to obtain information on the useful reciprocal regulatory factors that mediate cementum formation and regeneration through a series of molecular mechanisms.


Assuntos
Cementogênese , Cemento Dentário , Células Epiteliais , Transição Epitelial-Mesenquimal , Doenças Periodontais , Ligamento Periodontal , Regeneração , Doenças Estomatognáticas , Dente , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA