Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Pharmacological Bulletin ; (12): 1248-1255, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013768

RESUMO

To investigate the effect of cantharidin ( CTD) on platelet function and the mechanism of anti-platelet aggregation. Methods Washed platelets were collected from the venous blood of healthy volunteers. The effect of CTD on platelet aggregation and release was determined by aggregometer. The CTD concentration was 2.5 ,5 ,10 μmol • L

2.
Chinese Medical Journal ; (24): 326-331, 2012.
Artigo em Inglês | WPRIM | ID: wpr-333493

RESUMO

<p><b>BACKGROUND</b>Inflammation is one of important mechanisms for myocardial ischemia reperfusion injury (IRI). Ischemia postconditioning (IPOC) can protect the heart against IRI by inhibiting inflammation, but its cardioprotection is weaker than that of ischemia preconditioning. Recently, the α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) agonist has shown anti-inflammatory effects in many diseases related to inflammation. This randomized controlled experiment was designed to evaluate whether combined postconditioning with IPOC and the α7nAChR agonist could produce an enhanced cardioprotection in a rat in vivo model of acute myocardial IRI.</p><p><b>METHODS</b>Fifty Sprague-Dawley rats were randomly divided into five equal groups: sham group, control group, IPOC group, α7nAChR agonist postconditioning group (APOC group) and combined postconditioning with IPOC and α7nAChR agonist group (combined group). Hemodynamic parameters were recorded during the periods of ischemia and reperfusion. Serum concentrations of troponin I (TnI), tumor necrosis factor α (TNF-α) and high-mobility group box 1 (HMGB-1) at 180 minutes after reperfusion were assayed in all groups. At the end of the experiment, the infarct size was assessed from excised hearts by Evans blue and triphenyl tetrazolium chloride staining.</p><p><b>RESULTS</b>As compared to the sham group, the infarct size in the other four groups was significantly increased, serum levels of TnI, TNF-α and HMGB1 in the control group and TNF-α, HMGB1 in the IPOC group were significantly increased. The infarct size and serum concentrations of TNF-α, HMGB1 and TnI in the IPOC, APOC and combined groups were significantly lower than those in the control group. As compared to the IPOC group, the infarct size in the combined group was significantly decreased, serum concentrations of TnI, TNF-α and HMGB1 in the APOC and combined groups were significantly reduced. Although the infarct size was significantly smaller in the combined group than in the APOC group, serum levels of TNF-α and HMGB1 were significantly higher in the combined group than in the APOC group.</p><p><b>CONCLUSIONS</b>In a rat in vivo model of acute myocardial IRI, combined postconditioning with IPOC and the α7nAChR agonist can produce enhanced protection against myocardial IRI by increasing the anti-inflammatory effect.</p>


Assuntos
Animais , Masculino , Ratos , Coração , Precondicionamento Isquêmico Miocárdico , Métodos , Traumatismo por Reperfusão Miocárdica , Miocárdio , Patologia , Agonistas Nicotínicos , Usos Terapêuticos , Ratos Sprague-Dawley , Receptores Nicotínicos , Metabolismo , Fator de Necrose Tumoral alfa , Sangue , Receptor Nicotínico de Acetilcolina alfa7
3.
Chinese Medical Journal ; (24): 2209-2215, 2011.
Artigo em Inglês | WPRIM | ID: wpr-338486

RESUMO

<p><b>OBJECTIVE</b>A general review was made of studies involving: (1) The experimental evidence of remote ischemic preconditioning (RIPC) and relative clinical studies, (2) The experimental and clinical evidences of remote ischemic postconditioning (RIPOC), (3) The potential mechanistic pathways underlying their protective effects.</p><p><b>DATA SOURCES</b>The data used in this review were mainly from manuscripts listed in PubMed that were published in English from 1986 to 2010. The search terms were "myocardial ischemia reperfusion injury", "ischemia preconditioning", "ischemia postconditioning", "remote preconditioning" and "remote postconditioning".</p><p><b>STUDY SELECTION</b>(1) Clinical and experimental evidence that both RIPC and RIPOC produce preservation of ischemia reperfusion injury (IRI) of myocardium and other organs, (2) Studies related to the potential mechanisms, by which remote ischemic conditioning protects myocardium against IRI.</p><p><b>RESULTS</b>Both RIPC and RIOPC have been shown to attenuate myocardial IRI in laboratory animals. Also, their cardioprotective effects have appeared in some clinical studies. Except the external, the detailed internal mechanisms of remote ischemic conditioning have been generally described. Through these descriptions better protocols can be developed to provide improved cardioprotective procedures.</p><p><b>CONCLUSIONS</b>Remote ischemic conditioning is an endogenous cardioprotective mechanism from outside the heart that protects against myocardial IRI and represents a general form of inter-organ protection. Remote ischemic conditioning may have an immense impact on clinical practice in the near future.</p>


Assuntos
Humanos , Precondicionamento Isquêmico Miocárdico , Métodos , Traumatismo por Reperfusão Miocárdica
4.
Chinese Medical Journal ; (24): 2720-2726, 2010.
Artigo em Inglês | WPRIM | ID: wpr-285758

RESUMO

<p><b>OBJECTIVE</b>A general review was made of studies involving: (1) the concept and mechanism of the cholinergic anti-inflammatory pathway (CAP), (2) the important role of inflammatory response in myocardial ischemia reperfusion (I/R) injury and (3) the evidence and mechanisms by which CAP may provide protection against myocardial I/R injury.</p><p><b>DATA SOURCES</b>The data used in this review were mainly from manuscripts listed in PubMed that were published in English from 1987 to 2009. The search terms were "vagal nerve stimulation", "myocardial ischemia reperfusion injury", "nicotine acetylcholine receptor" and "inflammation".</p><p><b>STUDY SELECTION</b>(1) Clinical and experimental evidence that the inflammatory response induced by reperfusion enhances myocardial I/R injury. (2) Clinical and laboratory evidence that the CAP inhibits the inflammation and provides protection against myocardial I/R injury.</p><p><b>RESULTS</b>The myocardial I/R injury is really an inflammatory process characterized by recruitment of neutrophils into the ischemic myocardium and excessive production of pro-inflammatory cytokines. Because the CAP can modulate the inflammatory response by decreasing the production and release of pro-inflammatory cytokines, it can provide protection against myocardial I/R injury.</p><p><b>CONCLUSIONS</b>The CAP can inhibit the inflammatory response induced by reperfusion and protect against myocardial I/R injury. It represents an exciting opportunity to develop new and novel therapeutics to attenuate the myocardial I/R injury.</p>


Assuntos
Animais , Humanos , Citocinas , Metabolismo , Inflamação , Alergia e Imunologia , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica , Alergia e Imunologia , Metabolismo , Estimulação do Nervo Vago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA