Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 204-211, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940570

RESUMO

ObjectiveTo explore the material basis and mechanism of Nardostachyos Radix et Rhizoma (NRER)-Agrimoniae Herba (AH), the herbal pair effective in regulating the liver, invigorating Qi, and calming palpitations, in the treatment of premature ventricular contractions (PVCs) by network pharmacology and molecular docking. MethodThe chemical components and targets of NRER and AH were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) combined with relevant literature. GeneCards,Online Mendelian Inheritance in Man(OMIM),and DrugBank were used to predict the potential targets against PVCs. STRING platform was used for protein-protein interaction (PPI) analysis. Metascape platform was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Cytoscape 3.8.0 was used to construct the NRER-AH component-potential target-signaling pathway network. The main target proteins underwent molecular docking to the active components of NRER-AH by AutoDock 4.2.6. ResultThe targets of nine active components in NRER-AH (such as quercetin,kaempferol,and acacetin) against PVCs mainly involved tumor necrosis factor (TNF),mitogen-activated protein kinase 1(MAPK1),and protein kinase B1(Akt1). The potential targets were mainly enriched in 26 signaling pathways,such as pathways in cancer and the advanced glycosylation end product (AGE)-receptor of advanced glycosylation end product(RAGE) signaling pathway. The results of molecular docking showed that the majority of the active components (92.59%) of NRER-AH had good binding activities with the main target proteins TNF,MAPK1,and Akt1. ConclusionThe active components of NRER-AH can regulate cardiac ion channels,resist inflammation, and combat oxidative stress to treat PVCs through multi-target and multi-pathway interventions. They can also improve symptoms related to depression and anxiety by inhibiting monoamine oxidase activity and protecting nerves from damage. This study is expected to provide research ideas and the theoretical basis for further exploring the material basis and mechanism of NRER-AH in the treatment of PVCs.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 190-198, 2020.
Artigo em Chinês | WPRIM | ID: wpr-873204

RESUMO

Objective:To investigate the mechanism of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma in treatment of atrial fibrillation by predicting targets and signaling pathways based on network pharmacology.Method:The traditional Chinese medicine system platform (TCMSP) database was used to screen out active components of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma,predict targets,and construct the active component-predicted target network.Through the Online Mendelian Inheritance in Man (OMIM),Therapeutic Target Database (TTD),and Genecards databases,potential target information of atrial fibrillation was retrieved.STRING 11.0 database was used to obtain the protein-protein interaction data of relevant targets,and the results were visualized by Cytoscape 3.7.1 software to construct protein-protein interaction network relating to atrial fibrillation.The predicted targets of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma were mapped to the potential targets of atrial fibrillation.The intersection targets were the potential targets for the treatment of atrial fibrillation with Nardostachyos Radix et Rhizoma and Corydalis Rhizoma.Then,Visualization and Integrated Discovery (DAVID),a database for annotation,was used to analyze biological functions and pathways of the potential targets of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma in the treatment of atrial fibrillation.Finally,Cytoscape3.7.1 software was utilized to construct active component-potential target-signal pathway network of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma in treatment of atrial fibrillation.Result:Totally 51 active components of Nardostachyos Radix et Rhizoma and Corydalis Rhizoma were screened out,and 18 potential targets for the treatment of atrial fibrillation with Nardostachyos Radix et Rhizoma and Corydalis Rhizoma were predicted.The effect was mainly correlated with the regulation of interleukin-6 (IL-6),sodium channel protein type 5 subunit alpha (SCN5A),tumor necrosis factor (TNF),nitric-oxide synthase,endothelial (NOS3),potassium voltage-gated channel subfamily hmember 2 (KCNH2),collagen alpha-1(I) chain (COL1A1),retinoic acid receptor RXR-alpha (RXRA),tissue factor (F3),alpha-1B adrenergic receptor (ADRA1B) and other target proteins,cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase G (PKG) signaling pathway,phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt) signaling pathway,transcriptional disorders in cancer,calcium signaling pathways,and adrenergic signals in cardiomyocytes.Conclusion:Nardostachyos Radix et Rhizoma and Corydalis Rhizoma treat atrial fibrillation based on multiple components,multiple targets and multiple channels,and provide a scientific basis for subsequent experimental studies for further explainning its mechanism of action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA