Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E077-E082, 2019.
Artigo em Chinês | WPRIM | ID: wpr-802508

RESUMO

Objective To compare the in vivo degradation rates of two different kinds of high purity magnesium bone screws by animal experiments, so as to make some suggestions on structural design of high purity magnesium bone screws. Methods High purity magnesium bone screws with threads and without threads were implanted into femoral condyles of New Zealand rabbits separately. Twenty-four rabbits were randomly divided into 3 groups. They were euthanized at 8, 12 and 16 weeks after operation, respectively. The in vivo degradation rates of bone screws with two different shapes were compared through micro-CT scanning and Skyscan CT-analyser software, and the stress changes during the progress of bone screw degradation were analyzed. Results The initial surface area of threaded screws [(31.70±0.06) mm2] was significantly greater than that of the non-threaded ones [(29.56±0.22) mm2]. After 8, 12 and 16 weeks, the volume loss ratios of the threaded screws were (26.01±3.44)%, (33.35±5.05)%, (36.84±6.99)%, respectively, and the volume loss ratios of the non-threaded screws were (22.53±4.78)%, (31.12±6.59)%, (43.22±9.31)%, respectively. At the same time point, there were no significant differences in the volume loss ratio between two kinds of screws. The relationship between the volume reduction and the implantation time was linear for non-threaded screws and gradually decreasing for threaded screws. Conclusions Under the low-bearing condition, different structural design for high purity magnesium screws has no obvious effect on their degradation rate in vivo.

2.
Journal of Medical Biomechanics ; (6): E256-E261, 2019.
Artigo em Chinês | WPRIM | ID: wpr-802451

RESUMO

Objective To study the change patterns of bone microstructural parameters around the magnesium based- implants after implantation in rabbit femur at different implantation time points. Methods The threaded and non-threaded high-purity magnesium (HP Mg, 99.99 wt.%) screws, with a 2 mm diameter and a 7 mm length, were implanted into the femoral condyle of the rabbits. The control group was the drilled and healthy group. Micro-CT scanning and analysis were performed at 8th, 12th and 16th week after operation. The obtained microstructural parameters included bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp). Results At 8th week, BMD and BV/TV in non-threaded magnesium screw group were significantly higher than those in healthy group, Tb.N was significantly higher than that in drilled and healthy group, and Tb.Sp was significantly lower than that in healthy group. At 12th week, BMD, BV/TV and Tb.N in threaded magnesium screw group were significantly higher than those in drilled and healthy group, Tb.Th was significantly higher than that in healthy group, and Tb.Sp was significantly lower than that in drilled and healthy group. At 16th week, BMD, BV/TV and Tb.N in non-threaded magnesium screw group were significantly higher than those in drilled and healthy group, and Tb.Sp was significantly lower than that in drilled and healthy group. Conclusions The magnesium based-implant promoted higher BMD, BV/TV, Tb.Th, Tb.N and lower Tb.Sp of surrounding implant, indicating that osseointegration and bone growth were in good condition. Magnesium based-implant could effectively promote the regeneration of bone. The results provide a theoretical basis for the orthopedic application of magnesium based-implants in clinic.

3.
Journal of Medical Biomechanics ; (6): E417-E422, 2018.
Artigo em Chinês | WPRIM | ID: wpr-803730

RESUMO

Objective To study the effects of mechanical load on in vivo degradation performance of high-purity magnesium (HP Mg, 99.99 wt.%) quantitatively. Methods Cylindrical Mg specimens, with a 2 mm diameter and a 14 mm length, were mounted in polyetheretherketone (PEEK) rings to bear compressive stresses [(6.2±0.6) MPa], tensile stresses [(4.6±0.1) MPa] or no stress (as control). The specimens under different stress states were implanted subcutaneously in dorsal abdominal regions of SD rats for 4 weeks. The mass loss, residual volume and surface morphology of the specimens and staining of surrounding soft tissues were used to analyze the degradation rate of HP Mg. Results Specimens and rings were completely encapsulated by membranous tissues after implantation for 4 weeks. No significant differences in the degradation rates were noted between specimens bearing stress and the control. The corrosion layers of specimens under each stress state were uniform. Conclusions The compressive and tensile stresses (4-6 MPa) could not affect significantly HP Mg degradation performance in vivo. The research findings provide theoretical references for the design and clinical application of Mg-based degradable implants.

4.
Chinese Journal of Practical Internal Medicine ; (12)2001.
Artigo em Chinês | WPRIM | ID: wpr-565499

RESUMO

Objective To improve the understanding of primary pulmonary artery sarcoma(PAS)and its early diagnosis and treatment.Methods The clinical data of 3 PAS patients in Beijing Anzhen Hospital and related literature,the clinical features,diagnosis and therapy of the disease were retrospectively studied.Results Pulmonary artery sarcoma had similar clinical presentations to pulmonary thromboembolism(PTE).Although CT pulmonary angiography and Color Doppler echocardiography etc were helpful to the diagnosis of the entity,the confirmed diagnosis needed the operation.The surgery was main therapy for the disease.Conclusion Pulmonary artery sarcoma is easily misdiagnosed as PTE.The clinicians should pay more attention to the disease so as to early diagnose and treat it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA