Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Genomics & Informatics ; : e2-2021.
Artigo em Inglês | WPRIM | ID: wpr-890725

RESUMO

BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

2.
Genomics & Informatics ; : e2-2021.
Artigo em Inglês | WPRIM | ID: wpr-898429

RESUMO

BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

3.
Experimental & Molecular Medicine ; : e443-2018.
Artigo em Inglês | WPRIM | ID: wpr-914283

RESUMO

Peroxiredoxin (Prx), a family of ubiquitous thiol peroxidases, functions as a redox signaling regulator that controls cellular Hâ‚‚Oâ‚‚ in mammalian cells and has recently received attention for being overexpressed in various cancer types. In this study, we show that Prx type II (PrxII) is rather silenced in gastric cancer cells. PrxII expression is severely downregulated in 9 out of the 28 gastric cancer cell lines. Strikingly, PrxII expression is completely lost in three cell lines, MKN28, MKN74 and SNU484. Loss of PrxII expression is due to DNA methyltransferase 1-dependent methylation at the promoter region of the PrxII gene. Restoration of PrxII expression using a retroviral system markedly reduces the colony-forming ability and migratory activity of both MKN28 and SNU484 cells by inhibiting Src kinase. Mechanistically, PrxII peroxidase activity is essential for regulating gastric cancer cell migration. Bioinformatics analysis from The Cancer Genome Atlas stomach cancer data (STAD) revealed significantly low PrxII expression in gastric cancer patients and a negative correlation between PrxII expression and methylation levels. More importantly, low PrxII expression also strongly correlates with poor survival in cancer patients. Thus our study suggests that PrxII may be the first thiol peroxidase that simultaneously regulates both survival and metastasis in gastric cancer cells with high clinical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA