Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | WPRIM | ID: wpr-1010983

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Assuntos
Humanos , Camundongos , Ratos , Animais , Idoso , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Astrócitos/patologia , Pós/uso terapêutico , Ursidae/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Bile , Camundongos Endogâmicos C57BL , Microglia , Modelos Animais de Doenças
2.
Artigo em Chinês | WPRIM | ID: wpr-411750

RESUMO

Implantation window is the transient period when the embryos develop into blastocysts and the uterus differentiates into the receptive state synchronically. Estrogen and progesterone are the comprehensive regulating molecules during this process. They influence the proliferation and differentiation of multiple cell types in the uterus through the modulation of various local-signaling molecules.Uterus and blastocyst interact by the paracrine effects of prostaglandin, histamine, calcitonin, cytokines and growth factors at implantation window. This molecular cross-talk modulates the interaction between trophectoderm and uterine luminal epithelium. Once the implantation window is open, it then switches into unreceptive state spontaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA