Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Braz. j. med. biol. res ; 43(12): 1232-1238, Dec. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-568997

RESUMO

Our objective was to estimate the efficacy of the measurement of serum YKL-40 alone or with CA125 as biomarkers for the diagnosis of epithelial ovarian cancer (EOC) using the YKL-40 ELISA kit. An experimental group of 49 ovarian cancer patients included 42 patients with EOC (53 ± 15 years, range: 19-81 years) and 7 patients (48 ± 13 years, range: 29-36 years) with borderline epithelial ovarian tumor. A control group of 88 non-malignant cases included 42 patients (43 ± 10 years, range: 26-77 years) with benign gynecological disease and 46 healthy women (45 ± 14 years, range: 30-68 years) at a teaching hospital. Both YKL-40 (220.1 ± 94.1 vs 61.6 ± 48.4 and 50.1 ± 41.2 ng/mL) and CA125 (524.9 ± 972.5 vs 13.4 ± 7.6 and 28.5 ± 29.6 U/mL) levels were significantly higher (P < 0.05) in patients with ovarian cancer compared to the healthy and non-malignant groups. YKL-40 had 92.9 percent sensitivity and 94.4 percent specificity for the diagnosis of EOC. When YKL-40 and CA125 were tested in parallel, the sensitivity was increased to 98.2 percent, but the specificity was decreased to 81.3 percent. The correlations between serum YKL-40 and tumor stage, grade histology, performance status, patient age, and extension of debulking surgery were tested. With increasing stage and grade of EOC, preoperative serum YKL-40 levels were significantly increased (P = 0.029, P = 0.05, respectively). Serum YKL-40 alone or with serum CA125 levels are useful, although with some limitations, to diagnose ovarian cancer. Our study showed that YKL-40 may not be an independent prognostic factor for ovarian cancer. This prospective study may be a new trend in looking for biomarkers that optimize diagnosis of ovarian cancer.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , /sangue , Glicoproteínas/sangue , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Sensibilidade e Especificidade
2.
J Biosci ; 2000 Sep; 25(3): 275-84
Artigo em Inglês | IMSEAR | ID: sea-111298

RESUMO

Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR alpha/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor a (RAR alpha) (including: PML-RAR alpha, PLZF-RAR alpha, NPM-RAR alpha, NuMA- RAR alpha or STAT5b-RAR alpha) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR alpha and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR alpha/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60/citologia , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas Nucleares/fisiologia , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Receptores do Ácido Retinoico/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Receptores X de Retinoides , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Transcrição Gênica/efeitos dos fármacos , Translocação Genética , Tretinoína/farmacologia , Células Tumorais Cultivadas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA