Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 621-629, 2021.
Artigo em Chinês | WPRIM | ID: wpr-888220

RESUMO

Surface electromyography (sEMG) is a weak signal which is non-stationary and non-periodic. The sEMG classification methods based on time domain and frequency domain features have low recognition rate and poor stability. Based on the modeling and analysis of sEMG energy kernel, this paper proposes a new method to recognize human gestures utilizing convolutional neural network (CNN) and phase portrait of sEMG energy kernel. Firstly, the matrix counting method is used to process the sEMG energy kernel phase portrait into a grayscale image. Secondly, the grayscale image is preprocessed by moving average method. Finally, CNN is used to recognize sEMG of gestures. Experiments on gesture sEMG signal data set show that the effectiveness of the recognition framework and the recognition method of CNN combined with the energy kernel phase portrait have obvious advantages in recognition accuracy and computational efficiency over the area extraction methods. The algorithm in this paper provides a new feasible method for sEMG signal modeling analysis and real-time identification.


Assuntos
Humanos , Algoritmos , Eletromiografia , Gestos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
2.
Journal of Biomedical Engineering ; (6): 407-410, 2012.
Artigo em Chinês | WPRIM | ID: wpr-271764

RESUMO

Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.


Assuntos
Humanos , Retroalimentação , Procedimentos Cirúrgicos Minimamente Invasivos , Robótica , Cirurgia Assistida por Computador , Percepção do Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA