Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Applied Physiology ; (6): 316-321, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255025

RESUMO

<p><b>OBJECTIVE</b>Since 2011 EB-APS conference, we hypotheses that phase switching of inspiration-expiration is dominantly initiated by oscillatory information PaO2, PaCO2 and [H+] via fast peripheral chemical receptors. However, the evidence of the waveform of ABG is lack.</p><p><b>METHODS</b>Six surgery patients with normal heart function and negative Allen test, had been placed the arterial catheterization directly connected to 3 x 1 000 mm pre-heparin plastic pipe for continuous collecting arterial blood. We counted the number of heart beat for the blood collecting time, and separated the blood pipe into the heart beat numbers' short pieces using haemostatic forceps, then put pipe into iced water at once fir analyzing PaO2, PaCO2, pH and SaO2 as soon as possible. We selected two breaths cycles of waveform from each patient for data calculations of magnitudes and time interval.</p><p><b>RESULTS</b>The heart beat numbers for filling blood into pipe were 16 ± 2, and all covered more than 2 breathing cycles. Each breathing cycle is cover 5 ± 0.6 heart beat. There were significant changes of PaO2, PaCO2, [H+] a and SaO2 (i.e. the highest high values compare to the next lowest values, P < 0.05). The time interval of changing PaO2, PaCO2, [H+]a and SaO2 magnitudes were 11.28 ± 1.13 mmHg, 1.77 ± 0.89 mmHg, 1.14 ± 0.35 nmol/L and 0.52% ± 0.44% respectively.</p><p><b>CONCLUSION</b>This simple continuous beat-by-beat arterial blood sampling and ABG analyzing method is new and practicable. We obtain a clear evidence of periodic parameters ABG waveform, which following breathing cycle.</p>


Assuntos
Humanos , Artérias , Fisiologia , Gasometria , Frequência Cardíaca , Monitorização Fisiológica , Métodos , Respiração
2.
Chinese Journal of Applied Physiology ; (6): 322-340, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255024

RESUMO

<p><b>OBJECTIVE</b>We investigate the magnitudes of waveform changes of arterial blood gas (ABG) in patients with heart failure.</p><p><b>METHODS</b>Five patients with heart failure were selected, continuous collecting radial artery blood and measured PaO2, PaCO2, pHa and Sao2. We selected two typical breaths cycles of waveform changes of ABG from each patient for data analysis. Comparison of the adjacent highest and lowest values to verify the presence of a periodic waveform changes of ABG, and in addition, we used t test to analysis the range of waveform changes of ABG in patients with heart failure and patients with normal cardiac function and compared whether the difference between them.</p><p><b>RESULTS</b>The 5 patients (2 surgical and 3 ICU) with heart failure, were 4 male and 1 female, (69 ± 7)year, (169 ± 10) cm, (75 ± 19)kg, LVEF = (38 ± 3)%. The heart beat numbers for full blood into the blood sampling pipe were 17 ± 2, and all covered more than 2 breath cycles. There were significant changes of PaO2, PaCO2, [H+]a and SaO2 (P < 0.05). The magnitudes of changing PaO2, PaCO2, [H+]a and Sao2 were (7.94 ± 2.02)mmHg, (1.18 ± 0.56)mmHg, (0.54 ± 0.17)nmol/L and (0.21 ± 0.07)%, and they were (6.1 ± 1.5)%, (3.2 ± 1.5)%, (1.5 ± 0.5)% and (0.2 ± 0.1)% from their mean respectively. Even these magnitudes fo all ABG parameters were trendily lower than those of patients with normal cardiac function, but only PaO2 and [H+]a were significant (P < 0.05).</p><p><b>CONCLUSION</b>Using this simple continuous beat-by-beat arterial blood sampling method, we obtained a clear evidence of periodic waveform of ABG parameters following by breath cycle in patients with heart failure, but the magnitude trendily be decreased.</p>


Assuntos
Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gasometria , Doenças Cardiovasculares , Insuficiência Cardíaca , Frequência Cardíaca , Monitorização Fisiológica , Métodos
3.
Chinese Journal of Applied Physiology ; (6): 341-348, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255019

RESUMO

<p><b>OBJECTIVE</b>Under the guidance of the holistic integrative physiology medicine, we reanalyzed the data during symptom-limited maximum cardiopulmonary exercise testing (CPET) in order to investigate control and regulatory mechanism of breathing.</p><p><b>METHODS</b>This study investigated 5 normal volunteers who accepted artery catheter, performed CPET room air. Continuous measured pulmonary ventilation parameters and per minute arterial blood gas (ABG) analysis sample parameters during exercise. All CPET and ABG data changes were standard analyzed and calculated.</p><p><b>RESULTS</b>With gradually increasing power, minute oxygen uptake(every breath oxygen uptake x respiratory rate = O2 paulse x heart rate) and minute ventilation (tidal volume x respiratory rate) showed nearly linear progressive increase during the CPET(compared with the rest stage, P < 0.05 - 0.001); Minute ventilation increased even more significant after the anaerobic threshold (AT) and respiratory compensation point. PaO2 was increased at recovery 2 minutes (P < 0.05); PaCO2 was decreased after anaerobic threshold 2 minutes (P < 0.05); [H+]a was increased from AT (P < 0.05), and rapidly raised at last 2 minutes, remained high at recovery. Lactate was increased rapidly from AT (compared with resting, P < 0.05); bicarbonate decreased rapidly from AT (compared with resting, P < 0.05) and it's changed direction was contrary to lactic acid.</p><p><b>CONCLUSION</b>In order to overcome the resistance of the power during exercise, metabolic rate othe body increased, respiratory change depend upon the change metabolism, and the accumulation of acidic products exacerbated respiratory reactions at high intensity exercise.</p>


Assuntos
Humanos , Limiar Anaeróbio , Gasometria , Teste de Esforço , Voluntários Saudáveis , Frequência Cardíaca , Oxigênio , Consumo de Oxigênio , Ventilação Pulmonar , Respiração , Fenômenos Fisiológicos Respiratórios , Volume de Ventilação Pulmonar
4.
Chinese Journal of Applied Physiology ; (6): 345-348, 2015.
Artigo em Chinês | WPRIM | ID: wpr-255018

RESUMO

<p><b>OBJECTIVE</b>Basis on the dynamic changes of the ventilation and arterial blood gas parameters to symptom-limited maximum cardiopulmonary exercise testing (CPET), we further investigate the effect of alkalized blood by drinking 5% NaHCO3 on ventilation during exercise.</p><p><b>METHODS</b>After drinking 5% NaHCO3 75 ml (3.75 g) every 5 min, total dosage of 0.3 g/Kg, 5 volunteers repeated CPET. All CPET and ABG data changes were analyzed and calculated. At the same time, CPET and ABG parameters after alkalized blood were compared with those before alkalized blood (control) used paired t test.</p><p><b>RESULTS</b>After alkalized blood, CPET response patterns of parameters of ventilation, gas exchange and arterial blood gas were very similar (P > 0.05). All minute ventilation, tidal volume, respiratory rate, oxygen uptake and carbon dioxide elimination were gradually increased from resting stage (P < 0.05-0.001), according to the increase of power loading. During CPET after alkalized blood, ABG parameters were compared with those of control: hemoglobin concentrations were lower, CaCO2 and pHa were increased at all stages (P < 0.05). The PaCO2 increased trend was clear, however only significantly at warm-up from 42 to 45 mmHg (P < 0.05). Compared with those of control, only the minute ventilation was decreased from 13 to 11 L/min at resting (P < 0.05).</p><p><b>CONCLUSION</b>Even with higher mean CaCO2, PaCO2 and pHa, lower Hba and [H+]a, the CPET response patterns of ventilatory parameters after alkalized blood were similar.</p>


Assuntos
Humanos , Gasometria , Dióxido de Carbono , Teste de Esforço , Oxigênio , Consumo de Oxigênio , Respiração , Fenômenos Fisiológicos Respiratórios , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA