Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 4999-5015, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011210

RESUMO

The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b. The hybrid membrane could endow nanoparticles with strong capacity to migrate into inflammatory sites and neutralize proinflammatory cytokines and increase the delivery efficiency of microRNA-10b into adult mammalian cardiomyocytes (CMs) by fusing with cell membranes and leading to the release of MSNs-miR into cytosol. Upon NM@miR administration, this nanoparticle could home to the injured myocardium, restore the local immunity, and efficiently deliver microRNA-10b to cardiomyocytes, which could reduce the activation of Hippo-YAP pathway mediated by excessive cytokines and exert the best proliferative effect of miR-10b. This combination therapy could finally improve cardiac function and mitigate ventricular remodeling. Consequently, this work offers a combination strategy of immunity modulation and proliferative molecule delivery to boost cardiac regeneration after injury.

2.
Acta Pharmaceutica Sinica B ; (6): 3817-3833, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011140

RESUMO

Chronic inflammation is critical in the onset and progression of atherosclerosis (AS). The lipopolysaccharide (LPS) level in the circulation system is elevated in AS patients and animal models, which is correlated with the severity of AS. Inspired by the underlying mechanism that LPS could drive the polarization of macrophages toward the M1 phenotype, aggravate inflammation, and ultimately contribute to the exacerbation of AS, LPS in the circulation system was supposed to be the therapeutic target for AS treatment. In the present study, polymyxin (PMB) covalently conjugated to PEGylated liposomes (PLPs) were formulated to adsorb LPS through specific interactions between PMB and LPS. In vitro, the experiments demonstrated that PLPs could adsorb LPS, reduce the polarization of macrophages to M1 phenotype and inhibit the formation of foam cells. In vivo, the study revealed that PLPs treatment reduced the serum levels of LPS and pro-inflammatory cytokines, decreased the proportion of M1-type macrophages in AS plaque, stabilized AS plaque, and downsized the plaque burdens in arteries, which eventually attenuated the progression of AS. Our study highlighted LPS in the circulation system as the therapeutic target for AS and provided an alternative strategy for AS treatment.

3.
Acta Pharmaceutica Sinica B ; (6): 967-981, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929338

RESUMO

Tumor-targeted immunotherapy is a remarkable breakthrough, offering the inimitable advantage of specific tumoricidal effects with reduced immune-associated cytotoxicity. However, existing platforms suffer from low efficacy, inability to induce strong immunogenic cell death (ICD), and restrained capacity of transforming immune-deserted tumors into immune-cultivated ones. Here, an innovative platform, perfluorooctyl bromide (PFOB) nanoemulsions holding MnO2 nanoparticles (MBP), was developed to orchestrate cancer immunotherapy, serving as a theranostic nanoagent for MRI/CT dual-modality imaging and advanced ICD. By simultaneously depleting the GSH and eliciting the ICD effect via high-intensity focused ultrasound (HIFU) therapy, the MBP nanomedicine can regulate the tumor immune microenvironment by inducing maturation of dendritic cells (DCs) and facilitating the activation of CD8+ and CD4+ T cells. The synergistic GSH depletion and HIFU ablation also amplify the inhibition of tumor growth and lung metastasis. Together, these findings inaugurate a new strategy of tumor-targeted immunotherapy, realizing a novel therapeutics paradigm with great clinical significance.

4.
Acta Pharmaceutica Sinica B ; (6): 2054-2074, 2020.
Artigo em Inglês | WPRIM | ID: wpr-881099

RESUMO

Cancer immunotherapy has veered the paradigm of cancer treatment. Despite recent advances in immunotherapy for improved antitumor efficacy, the complicated tumor microenvironment (TME) is highly immunosuppressive, yielding both astounding and unsatisfactory clinical successes. In this regard, clinical outcomes of currently available immunotherapy are confined to the varied immune systems owing in large part to the lack of understanding of the complexity and diversity of the immune context of the TME. Various advanced designs of nanomedicines could still not fully surmount the delivery barriers of the TME. The immunosuppressive TME may even dampen the efficacy of antitumor immunity. Recently, some nanotechnology-related strategies have been inaugurated to modulate the immunosuppressive cells within the tumor immune microenvironment (TIME) for robust immunotherapeutic responses. In this review, we will highlight the current understanding of the immunosuppressive TIME and identify disparate subclasses of TIME that possess an impact on immunotherapy, especially those unique classes associated with the immunosuppressive effect. The immunoregulatory cell types inside the immunosuppressive TIME will be delineated along with the existing and potential approaches for immunosuppressive cell modulation. After introducing the various strategies, we will ultimately outline both the novel therapeutic targets and the potential issues that affect the efficacy of TIME-based nanomedicines.

5.
Acta Pharmaceutica Sinica B ; (6): 23-33, 2018.
Artigo em Inglês | WPRIM | ID: wpr-771139

RESUMO

There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

6.
Chinese Journal of Primary Medicine and Pharmacy ; (12): 1121-1123,后插2, 2014.
Artigo em Chinês | WPRIM | ID: wpr-599127

RESUMO

Objective To prepare polypeptide nerve growth factor (NGF) thermosentitive gel and observe drug release in vitro,in order to provide scientific information for biopharmaceuticals delivery system design aiming to treat the inner disease.Methods The thermosensitive in situ gel was prepared with NGF as main component and Pluronic F127 as the gel matrixes.The effect of concentration of gel matrix PF127 on lower critical solution temperature(LCST) were investigated.In vitro release kinetic studies were performed using membraneless dissolution method and reversed-phase high performance liquid chromatography (HPLC) method was adopted to determine NGF content in the dissolution medium.Results The average LCST of NGF-loaded gel prepared by different concentration of PF127 was 28.48-36.26℃ and the gels had good stability.The in vitro release kinetics was well characterized by sustained release and can be fitted by zero order kinetics.The in vitro accumulated release ratio of NGF in the thermosensitive gel reached to above 95%.hβ-NGF loaded in higher PF127 gel resulted in a more sustained release of hβ-NGF from the thermosensitive gel.Conclusion Well-prepared NGF thermosensitive gel is a promising inner ear-oriented drug delivery system for treating deafness and deserves to further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA