RESUMO
Bone is a dynamic tissue undergoing continuous regeneration and reconstruction, and its metabolic activities are mainly regulated by bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. In addition, a variety of cells such as adipocytes, inflammatory cells, endothelial cells, and nerve cells can affect bone metabolism by changing the bone marrow microenvironment. The incidence of bone metabolic diseases caused by bone metabolism disorders is increasing with aging of the population. At present, the clinical treatment of bone metabolic diseases has the disadvantages of long cycle, high cost and many side effects. Therefore, there is an urgent need for safe and effective prevention and treatment drugs. Corylin is an isoflavonoid extracted from Psoraleae Fructus, which has a variety of pharmacological effects such as anti-inflammatory, anti-oxidation, anti-tumor, anti-atherosclerosis, attenuating obesity and improving insulin resistance. Studies have shown that corylin not only exerts osteoprotective effects by promoting osteoblast differentiation and inhibiting osteoclast differentiation, but also plays a positive role in bone metabolism by regulating lipid metabolism, inflammatory response, angiogenesis and anti-aging. The current review overviews the effects and mechanisms of corylin on regulating bone metabolism directly or indirectly, hoping to open up a new perspective for the prevention and treatment of osteoporosis, fracture, osteoarthritis and other related diseases.