Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biomedical and Environmental Sciences ; (12): 116-126, 2015.
Artigo em Inglês | WPRIM | ID: wpr-264612

RESUMO

<p><b>OBJECTIVE</b>The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction.</p><p><b>METHODS</b>We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 μmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5'-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry.</p><p><b>RESULTS</b>Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells.</p><p><b>CONCLUSION</b>These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.</p>


Assuntos
Humanos , Precursor de Proteína beta-Amiloide , Metabolismo , Caspase 3 , Genética , Metabolismo , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Ginsenosídeos , Farmacologia , Glioma , Tratamento Farmacológico , Ionomicina , Farmacologia , Isoflurano , Farmacologia , Mitocôndrias , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA