Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Schistosomiasis Control ; (6): 545-556, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1011412

RESUMO

Objective To construct an evaluation index system for the capability of comprehensive control of mountain-type zoonotic visceral leishmaniasis based on the One Health concept, so as to provide insights into the control and elimination of mountain-type zoonotic visceral leishmaniasis using the One Health approach. Methods A preliminary evaluation index system was constructed based on literature review, panel discussions and field surveys. Thirty-three experts were selected from 7 provincial disease control and prevention centers in Beijing Municipality, Hebei Province, Shanxi Province, Henan Province, Sichuan Province, Shaanxi Province and Gansu Province where mountain-type zoonotic visceral leishmaniasis was endemic, and two rounds of expert consultations were conducted to screen the indicators. The positive coefficient, degree of concentration, degree of coordination, and authority of the experts were calculated, and the normalized weights of each index were calculated with the analytic hierarchy process. Results The response rates of questionnaires during two rounds of expert consultation were both 100.00% (33/33), and the authority coefficients of the experts were 0.86 and 0.88, respectively. The coefficients of coordination among experts on the rationality, importance, and operability of the indicators were 0.392, 0.437, 0.258, and 0.364, 0.335, 0.263, respectively (all P values < 0.05). Following screening, the final evaluation index system included 3 primary indicators, 17 secondary indicators, and 50 tertiary indicators. The normalized weights of primary indicators “external environment”, “internal support” and “comprehensive control” were 16.98%, 38.73% and 44.29%, respectively. Among the secondary indicators of the primary indicator “external environment”, the highest weight was seen for natural environment (66.67%), and among the secondary indicators of the primary indicator “internal support”, the lowest weight was seen for the scientific research for visceral leishmaniasis control (8.26%), while other indicators had weights of 12.42% to 13.38%. Among the secondary indicators of the primary indicator “comprehensive control”, the weight was 16.67% for each indicator. Conclusions An evaluation index system has been constructed for the capability of comprehensive control of mountain-type zoonotic visceral leishmaniasis based on the One Health concept. In addition to assessment of the effect of conventional mountain-type zoonotic visceral leishmaniasis control measures, this index system integrates the importance of top-level design, organizational management, and implementation of control measures, and includes indicators related to multi-sectoral cooperation.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 26-34, 2022.
Artigo em Chinês | WPRIM | ID: wpr-951064

RESUMO

Objective: To determine the spatiotemporal distribution of Schistosoma (S.) japonicum infections in humans, livestock, and Oncomelania (O.) hupensis across the endemic foci of China. Methods: Based on multi-stage continuous downscaling of sentinel monitoring, county-based schistosomiasis surveillance data were captured from the national schistosomiasis surveillance sites of China from 2005 to 2019. The data included S. japonicum infections in humans, livestock, and O. hupensis. The spatiotemporal trends for schistosomiasis were detected using a Joinpoint regression model, with a standard deviational ellipse (SDE) tool, which determined the central tendency and dispersion in the spatial distribution of schistosomiasis. Further, more spatiotemporal clusters of S. japonicum infections in humans, livestock, and O. hupensis were evaluated by the Poisson model. Results: The prevalence of S. japonicum human infections decreased from 2.06% to zero based on data of the national schistosomiasis surveillance sites of China from 2005 to 2019, with a reduction from 9.42% to zero for the prevalence of S. japonicum infections in livestock, and from 0.26% to zero for the prevalence of S. japonicum infections in O. hupensis. Analysis using an SDE tool showed that schistosomiasis-affected regions were reduced yearly from 2005 to 2014 in the endemic provinces of Hunan, Hubei, Jiangxi, and Anhui, as well as in the Poyang and Dongting Lake regions. Poisson model revealed 11 clusters of S. japonicum human infections, six clusters of S. japonicum infections in livestock, and nine clusters of S. japonicum infections in O. hupensis. The clusters of human infection were highly consistent with clusters of S. japonicum infections in livestock and O. hupensis. They were in the 5 provinces of Hunan, Hubei, Jiangxi, Anhui, and Jiangsu, as well as along the middle and lower reaches of the Yangtze River. Humans, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the north of the Hunan Province, south of the Hubei Province, north of the Jiangxi Province, and southwestern portion of Anhui Province. In the 2 mountainous provinces of Sichuan and Yunnan, human, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the northwestern portion of the Yunnan Province, the Daliangshan area in the south of Sichuan Province, and the hilly regions in the middle of Sichuan Province. Conclusions: A remarkable decline in the disease prevalence of S. japonicum infection was observed in endemic schistosomiasis in China between 2005 and 2019. However, there remains a long-term risk of transmission in local areas, with the highest-risk areas primarily in Poyang Lake and Dongting Lake regions, requiring to focus on vigilance against the rebound of the epidemic. Development of high-sensitivity detection methods and integrating the transmission links such as human and livestock infection, wild animal infection, and O. hupensis into the surveillance-response system will ensure the elimination of schistosomiasis in China by 2030.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 26-34, 2022.
Artigo em Chinês | WPRIM | ID: wpr-939472

RESUMO

Objective: To determine the spatiotemporal distribution of Schistosoma (S.) japonicum infections in humans, livestock, and Oncomelania (O.) hupensis across the endemic foci of China. Methods: Based on multi-stage continuous downscaling of sentinel monitoring, county-based schistosomiasis surveillance data were captured from the national schistosomiasis surveillance sites of China from 2005 to 2019. The data included S. japonicum infections in humans, livestock, and O. hupensis. The spatiotemporal trends for schistosomiasis were detected using a Joinpoint regression model, with a standard deviational ellipse (SDE) tool, which determined the central tendency and dispersion in the spatial distribution of schistosomiasis. Further, more spatiotemporal clusters of S. japonicum infections in humans, livestock, and O. hupensis were evaluated by the Poisson model. Results: The prevalence of S. japonicum human infections decreased from 2.06% to zero based on data of the national schistosomiasis surveillance sites of China from 2005 to 2019, with a reduction from 9.42% to zero for the prevalence of S. japonicum infections in livestock, and from 0.26% to zero for the prevalence of S. japonicum infections in O. hupensis. Analysis using an SDE tool showed that schistosomiasis-affected regions were reduced yearly from 2005 to 2014 in the endemic provinces of Hunan, Hubei, Jiangxi, and Anhui, as well as in the Poyang and Dongting Lake regions. Poisson model revealed 11 clusters of S. japonicum human infections, six clusters of S. japonicum infections in livestock, and nine clusters of S. japonicum infections in O. hupensis. The clusters of human infection were highly consistent with clusters of S. japonicum infections in livestock and O. hupensis. They were in the 5 provinces of Hunan, Hubei, Jiangxi, Anhui, and Jiangsu, as well as along the middle and lower reaches of the Yangtze River. Humans, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the north of the Hunan Province, south of the Hubei Province, north of the Jiangxi Province, and southwestern portion of Anhui Province. In the 2 mountainous provinces of Sichuan and Yunnan, human, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the northwestern portion of the Yunnan Province, the Daliangshan area in the south of Sichuan Province, and the hilly regions in the middle of Sichuan Province. Conclusions: A remarkable decline in the disease prevalence of S. japonicum infection was observed in endemic schistosomiasis in China between 2005 and 2019. However, there remains a long-term risk of transmission in local areas, with the highest-risk areas primarily in Poyang Lake and Dongting Lake regions, requiring to focus on vigilance against the rebound of the epidemic. Development of high-sensitivity detection methods and integrating the transmission links such as human and livestock infection, wild animal infection, and O. hupensis into the surveillance-response system will ensure the elimination of schistosomiasis in China by 2030.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA