Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Integrative Medicine ; (12): 158-166, 2021.
Artigo em Inglês | WPRIM | ID: wpr-881000

RESUMO

OBJECTIVE@#This study tests whether long-term intake of Allium tuberosum (AT) can alleviate pulmonary inflammation in ovalbumin (OVA)-induced asthmatic mice and evaluates its effect on the intestinal microbiota and innate lymphoid cells (ILCs).@*METHODS@#BALB/c mice were divided into three groups: phosphate buffer saline, OVA and OVA + AT. The asthmatic murine model was established by sensitization and challenge of OVA in the OVA and OVA + AT groups. AT was given to the OVA + AT group by oral gavage from day 0 to day 27. On day 28, mice were sacrificed. Histopathological evaluation of lung tissue was performed using hematoxylin and eosin, and periodic acid-Schiff staining. The levels of IgE in serum, interleukin-5 (IL-5) and IL-13 from bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The ILCs from the lung and gut were detected by flow cytometry. 16S ribosomal DNA sequencing was used to analyze the differences in colon microbiota among treatment groups.@*RESULTS@#We found that long-term intake of AT decreased the number of inflammatory cells from BALF, reduced the levels of IL-5 and IL-13 in BALF, and IgE level in serum, and rescued pulmonary histopathology with less mucus secretion in asthmatic mice. 16S ribosomal DNA sequencing results showed that AT strongly affected the colonic bacteria community structure in asthmatic mice, although it had no significant effect on the abundance and diversity of the microbiota. Ruminococcaceae and Desulfovibrionaceae were identified as two biomarkers of the treatment effect of AT. Moreover, AT decreased the numbers of ILCs in both the lung and gut of asthmatic mice.@*CONCLUSION@#The results indicate that AT inhibits pulmonary inflammation, possibly by impeding the activation of ILCs and adjusting the homeostasis of gut microbiota in asthmatic mice.

2.
Artigo em Chinês | WPRIM | ID: wpr-802123

RESUMO

Objective: To explore the effect of Da Chengqitang on the lung index,lung index inhibition rate,lung histological morphology,classification changes of inflammatory cells and mitogen-activated protein kinase (MAPK) signal pathway in mice with allergic asthma.Method: Forty female C57BL/6 mice were randomly divided into normal control group,model group,dexamethasone group (0.005 g·kg-1) and Da Chengqitang group (19 g·kg-1).Murine allergic asthma model was established by sensitization and nebulization of ovalbumin (OVA).In brief,asthmatic mice were first sensitized by OVA and Al (OH)3 mixture ip on day 0 and day 14,and then nebulized by OVA from day 21 to 27.At the same time,each mouse in the dexamethasone and Da Chengqitang groups were intragastrically administered with 0.2 mL corresponding medicine one hour before the nebulization challenge,while the normal control group was given with the same amount of normal saline.On day 28,pulmonary morphology was detected by htoxylin eosin (HE) staining and inflammatory cells from the brachial alveolar lavage fluid were counted by Diff staining.The expression levels of key proteins in MAPK signaling pathway were detected by Western blot.Result: As compared with the normal control group,the lung indexes were significantly increased in model group (PP0.01),with a predominant percentage of eosinophils,moreover,the expression levels of phosphorylated p38 MAPK and extracellular signal-regulated kinase 1/2(ERK1/2) were increased obviously in asthmatic mice.After treatment by Da Chengqitang,lung indexes and pulmonary inflammation were significantly decreased,with an inhibitory rate of 68.4% for lung indexes,and inflammatory pathology of lung tissues was obviously improved and inflammatory cell exudation was alleviated,with the obviously lower levels of phosphorylated p38 MAPK and ERK1/2 protein.Conclusion: Da Chengqitang based on "Pulmonary Intestinal Treatment" can effectively improve lung inflammation in mice with allergic asthma,which may be related to the expression of phosphorylated p38 MAPK and ERK1/2 protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA