Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 590-597, 2022.
Artigo em Chinês | WPRIM | ID: wpr-956830

RESUMO

Objective:To propose a markless patient setup workflow based on the optical surface monitoring system (AlignRT) and open-face mask immobilization for whole-course head tumor radiotherapy, assess the setup time and repositioning frequency of the proposed workflow, and conduct a comparative analysis of the differences, correlation, and consistency of the setup errors of the AlignRT and cone beam CT (CBCT) systems.Methods:A retrospective analysis was conducted for the data on the errors of 132 fractionated setup based on open-face mask immobilization of 33 head tumor patients. AlignRT-guided markless patient setup workflow was applied throughout the radiotherapy. Meanwhile, the body structures automatically generated by the treatment planning system were used as body references. The 6-degree-of-freedom (6DoF) setup errors (lateral, vertical, longitudinal, rotation, pitch, roll, and yaw directions), setup time, and repositioning frequency of the AlignRT and CBCT systems were recorded and analyzed. The Wilcoxon and Spearman analyses were used to statistically assess the differences and correlation of the setup errors of the two systems. Moreover, the Bland-Altman analysis was employed to evaluate the consistency of the two systems.Results:The 6DoF setup errors of CBCT were within the clinical tolerance (linear motions: -0.30 to 0.30 cm; rotational motions: -2.0° to 2.0°). The setup time and repositioning frequency of CBCT were (98 ± 31) s and 1.51% (2/132), respectively. There was no significant difference in setup errors between the two systems except those in x-axis ( Z = -3.11, P= 0.002), y-axis ( Z = -7.40, P<0.001), and Pitch ( Z= -4.48, P<0.001). There was a significant positive correlation between the setup errors along lateral ( rs = 0.47, P<0.001) and vertical ( rs = 0.29, P = 0.001) directions, rotation (Rtn; rs = 0.47, P<0.001), pitch (Pitch; rs = 0.28, P = 0.001) and roll (Roll; rs = 0.45, P<0.001) of the two systems. The 95% limits of agreement (95% LoA) of 6DoF setup errors were -0.12 to 0.09 cm, -0.07 to 0.17 cm, -0.19 to 0.20 cm, -1.0° to 0.9 °, -1.0° to 1.5°, and -0.9° to 1.0°, respectively. The 95% confidence interval (95% CI) of 95% LoA was -0.14 to 0.11 cm, -0.09 to 0.19 cm, -0.23 to 0.23 cm, -1.2° to 1.1°, -1.2° to 1.7°, and-1.0° to 1.1°, respectively, all of which were within the permissible error ranges. The 6DoF setup error difference of 3.41% (27/792< 5%) was beyond the 95% LoA. The maximum absolute differences of 6DoF setup errors within the 95% LoA were 0.12, 0.16, 0.19 cm, 0.9°, 1.5°, and 1.0°, respectively. Conclusions:The proposed markless setup workflow based on AlignRT combined with open-face mask immobilization for whole-course head tumor radiotherapy exhibits reasonable agreement and consistency with the patient setup using CBCT, with acceptable clinical efficiency. It can be applied to the first radiotherapy and the real-time monitoring of therapy to improve the safety and thus is of value in clinical applications.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 595-599, 2020.
Artigo em Chinês | WPRIM | ID: wpr-868489

RESUMO

Objective:To analyze and compare the radiation dose and image quality of kilo-voltage cone beam CT systems on different Varian accelerator platforms, providing data to support clinical decisions on selecting optimal protocols for image-guided radiotherapy based on cost-effective ratio (image quality / radiation dose).Methods:The radiation dose and image quality of various CBCT systems and scanning protocols on Varian Edge, Truebeam and ix (new and old) LINACs were obtained using a CT dose index (CTDI) phantom combined with a CT ionization chamber and a Catphan604 phantom, respectively. Figure of merit (FOM) was used to evaluate the cost-effective ratio of the image guidance schemes.Results:Considerable inter-system varieties of FOMs were observed, varying from 0.65 (Image Gently-full trajectory) to 48.46 (Image Gently-half trajectory). The inter-protocol varieties were also large, where the mean±SD was 22.14±13.47.Conclusions:Considering the explicit inter-system and inter-protocol varieties, it is clinically favorable to evaluate the image guidance schemes based on machine-specific measurement. For instance, parameters and equipment with low CTDI w can be beneficial for dose-sensitive patients. High CNR regimen favors patients with high image quality requirements. For ordinary patients, cost-effective ratio in terms of FOM can be very helpful to guide the decision-making of clinical image-guided radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA