Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Int. j. odontostomatol. (Print) ; 17(2): 174-185, jun. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1440356

RESUMO

This in silico study aimed to evaluate the biomechanical behavior of a full-arch implant-supported prosthesis on titanium and zirconia monotype implants. A 3D mandible containing 1.0 mm thick cortical and cancellous bone was modeled. Four dental implants (3.3 x 10 mm) were inserted into the jaw model in each model. The implants consisted of Titanium (Ti-S group) and Zirconia Monotype/one-piece (Zr-S group). Fixed full-arch implant-supported prostheses were cemented onto the implant. The models were exported to the analysis software and divided into meshes composed of nodes and tetrahedral elements. All materials were considered isotropic, elastic, and homogeneous. Therefore, all contacts were considered bonded, the mandible model was fixed in all directions, applying a static structural axial load of 300 N on the bottom of the fossa of the left mola r teeth. Microstrain and von-Mises stress (MPa) were adopted as failure criteria. Comparable stress and strain values were shown in the peri-implant bone for both groups. However, the Ti-S group presented a lower stress value (1,155.8 MPa) than the Zr-S group (1,334.2 MPa). Regarding bone tissues, the Ti-S group presented 612 µε and the Zr-S group presented 254 µε. The highest strain peak was observed in bone tissues around the implant closer to the load for both groups. Evaluating monotype zirconia and titanium implants, it is suggested that the greater the rigidity of the implant, the greater the concentration of internal stre sses and the less dissipation to the surrounding tissues. Therefore, monotype ceramic implants composed of yttrium-stabilized tetragonal polycrystalline zirconia may be a viable alternative to titanium implants for full-arch prostheses.


El objetivo de este estudio in silico fue evaluar el comportamiento biomecánico de una prótesis implanto soportada de arcada completa sobre implantes monotipo de titanio y zirconia. Se modeló una mandíbula en 3D que contenía tejido óseo cortical y esponjoso de 1,0 mm de espesor. En cada modelo, se insertaron cuatro implantes dentales (3,3 x 10 mm) en el modelo de mandíbula. Los implantes consistieron en Monotipo de Titanio y Zirconia. Sobre el implante se cementaron prótesis implanto soportadas de arcada completa fija. Los modelos se exportaron al software de análisis y se dividieron en mallas compuestas por nodos y elementos tetraédricos. Todos los materiales se consideraron isotrópicos, elásticos y homogéneos. Por lo tanto, todos los contactos se consideraron cementados, el modelo mandibular se fijó en todas las direcciones, aplicando una carga vertical estructural estática de 300 N en el fondo de la fosa de los dientes molares izquierdos. Se seleccionaron la microesfuerzo y la tensión de Von-Mises (MPa) como criterios de falla. Se mostraron valores de tensión y deformación comparables en el hueso periimplantario para ambos grupos. Sin embargo, el grupo Ti-S presentó un valor de estrés menor (1.155,8 MPa) que el grupo Zr-S (1.334,2 MPa). En cuanto a los tejidos óseos, el grupo Ti-S presentó 612 µε y el grupo Zr-S presentó 254 µε. La mayor concentración de deformación en el tejido óseo se observó en los tejidos alrededor del implante más cerca de la carga para ambos grupos. Al evaluar los implantes monotípicos de zirconia y titanio, se sugiere que cuanto mayor sea la rigidez del implante, mayor será la concentración de tensiones internas y menor la disipación a los tejidos circundantes. Por lo tanto, los implantes cerámicos monotipo compuestos de zirconia policristalina tetragonal estabilizada con itrio pueden ser una alternativa viable a los implantes de titanio para prótesis de arcada completa.


Assuntos
Implantes Dentários , Materiais Dentários , Estresse Mecânico , Fenômenos Biomecânicos , Análise de Elementos Finitos , Mandíbula/diagnóstico por imagem
2.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1385868

RESUMO

ABSTRACT: The most common failure in implantology are due to mechanical instability. Torque loosening or fracture of the screws are the most frequent complications. Furthermore, the fractured screw retrieval is complicated and time-consuming. So, modifications in the design of implant systems are justifiable to offer a greater degree of biomechanical stability. Thus, the present study proposes to evaluate an experimental geometry for abutment screw regarding failure probability and torque loss. Twenty implant/abutments sets (e-fix, A.S. Technology - Titanium Fix) were divided into the following groups (n=10 in each group): (1) Conventional screw (Screw neck ø 1.5 mm) and (2) Experimental screw (screw neck constricted ø 1.2 mm). The abutments were tightened with a controlled torque meter device following the manufacturer's recommendations. Mechanical cycling was carried out with a load of 50 N.cm during 5 x 10 6 cycles with a frequency of 2 Hz at a temperature of 37°C (ISO 14801). A digital torque meter was used to measure the reverse torque values of the prosthetic screw and the micro abutment screw, before and after loading. Data were statistically analyzed by One-way Anova and Tukey test (95 %). The results of the mean values of torque loss of the micro abutment screw were 58.44 % for the control group and 55.31 % for the experimental group and the mean torque loss for the prosthetic screw was 53.3 % and 61.3 % of the conventional and experimental groups, respectively. The survival probability was 100 % for both screw groups. It was concluded that experimental screw showed a similar behavior to conventional screws, showing similar reliability after fatigue life testing.


RESUMEN: En implantología las fallas más habituales se deben a la inestabilidad mecánica. El aflojamiento del torque o la fractura de los tornillos son las complicaciones más frecuentes. Además, la recuperación del tornillo fracturado es complicada y requiere mucho tiempo. Por tanto, las modificaciones en el diseño de los sistemas de implantes están justificados para ofrecer un mayor grado de estabilidad biomecánica. Por lo tanto, el presente estudio propone evaluar una geometría experimental para tornillo de pilar en cuanto a probabilidad de falla y pérdida de torque. Se dividieron veinte conjuntos de implantes / pilares (e-fix, AS Technology - Titanium Fix) en los siguientes grupos (n = 10 en cada grupo): (1) Tornillo convencional (cuello de tornillo ø 1,5 mm) y (2) Tornillo experimental (cuello de rosca estrechado ø 1,2 mm). Los pilares se apretaron con un dispositivo medidor de torque controlado siguiendo las recomendaciones del fabricante. El ciclo mecánico se realizó con una carga de 50 N.cm durante 5 x 10 6 ciclos con una frecuencia de 2 Hz a una temperatura de 37° C (ISO 14801). Se utilizó un medidor de torque digital para medir los valores de torque inverso del tornillo protésico y el tornillo de micro pilar, antes y después de la carga. Los datos se analizaron estadísticamente mediante la prueba One-way Anova y Tukey (95%). Los resultados de los valores medios de pérdida de torque del micro tornillo de pilar fueron 58,44 % para el grupo de control y 55,31 % para el grupo experimental y la pérdida de torque media para el tornillo protésico fue 53,3 % y 61,3 % de los grupos convencional y experimental, respectivamente. La probabilidad de supervivencia fue del 100 % para ambos grupos de tornillos. Se concluyó que el tornillo experimental mostró un comportamiento similar a los tornillos convencionales, mostrando una fiabilidad similar después de la prueba de vida a fatiga.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA