Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 47(1): 136-142, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-775098

RESUMO

Abstract The kinetics of an extracellular β-D-fructofuranosidase fructohydrolase production by Saccharomyces cerevisiae in a chemically defined medium, i.e., sucrose peptone agar yeast extract at pH 6, was investigated. The wild-type was treated with a chemical mutagen, methyl methane sulfonate. Among the six mutants isolated, methyl methane sulfonate-V was found to be a better enzyme producing strain (52 ± 2.4a U/mL). The maximum production (74 ± 3.1a U/mL) was accomplished after at 48 h (68 ± 2.7a mg/mL protein). The mutants were stabilized at low levels of 5-fluoro-cytocine and the viable ones were further processed for optimization of cultural conditions and nutritional requirements. The sucrose concentration, incubation period and pH were optimized to be 30 g/L, 28 °C, and 6.5, respectively. The methyl methane sulfonate-V exhibited an improvement of over 10 folds in enzyme production when 5 g/L ammonium sulfate was used as a nitrogen source. Thin layer chromatography and high-performance liquid chromatography analysis illustrated the optimal enzyme activity supported by the higher rate of hydrolysis of sucrose into monosaccharides, particularly α-D-glucose and β-D-fructose. The values for Qp (2 ± 0.12c U/mL/h) and Yp/s (4 ± 1.24b U/g) of the mutant were considerably increased in comparison with other yeast strains (both isolates and viable mutants). The mutant could be exploited for enzyme production over a wider temperature range (26–34 °C), with significantly high enzyme activity (LSD 0.048, HS) at the optimal temperature.


Assuntos
Mutação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , beta-Frutofuranosidase/biossíntese , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Hidrólise , Mutagênese , Mutagênicos/metabolismo , Serratia , Saccharomyces cerevisiae/genética , Sacarose/metabolismo , Ácidos Sulfínicos/metabolismo , Temperatura
2.
Chinese Traditional and Herbal Drugs ; (24): 2803-2807, 2013.
Artigo em Chinês | WPRIM | ID: wpr-855078

RESUMO

Objective: To study the chemical constituents in the leaves of Datura metel. Methods: The chemical constituents of ethanol extract from the leaves of D. metel were isolated and purified by chromatography over silica gel, AB-8 macroperous resin, ODS, Sephadex LH-20 columns, and RP-preparative HPLC. The structures were elucidated on the basis of physicochemical properties and spectral data analyses. Results: Forteen compounds were isolated and identified as naphthisoxazol A (1), congmuyaglyeoside I (2), L-tryptophan (3), quercetin3-O-2-(E-caffeoyl)-α-larabinopyranosyl- (1→2)-β-D-glucopyranoside-7-O-β-D-glucoside (4), n-butyl-O-α-D-fructofuranosidase (5), anoectochine (6), dihydrovomifoliol-O-β-D-glucoside (7), (6S, 7E, 9S)-9- [(β-D-glucopyranosyl)-oxy] megastigma-4, 7-dien-3-one (8), kaepmferol-3, 7-di-O-β-D-glucopyranoside (9), kaempferol-7-O-β-D-glucoside (10), quercetin-7-O-glucoside (11), (6S, 9R)-6-hydroxy-3-ketone-α-violet-grape alcohol-9-O-β-D-glucopyranoside (12), stigmasterol (13), and stigmasterol-3-O-β-D-glucoside (14). Conclusion: Compounds 1-8 are firstly found in the plants of Solanaceae.

3.
Electron. j. biotechnol ; 14(2): 2-2, Mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591932

RESUMO

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14 percent recovery. The native molecular mass of the glycoprotein (12 percent of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55ºC and 4.5. The enzyme was stable for more than 1 hr at 50ºC and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80 percent of activity after storage at 4ºC by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn2+, Mg2+ and Co2+, and inhibited by Cu2+, Hg2+ and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. Kd and Vmax values were 18 mM and 189 U/mg protein using sucrose as substrate.


Assuntos
Aspergillus/enzimologia , beta-Frutofuranosidase/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Cinética , Substratos para Tratamento Biológico , Sacarose , Temperatura , beta-Frutofuranosidase/isolamento & purificação
4.
Braz. j. microbiol ; 40(3): 612-622, Sept. 2009.
Artigo em Inglês | LILACS | ID: lil-522482

RESUMO

The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50ºC while the extraand intracellular enzymes produced in SbmF exhibited maximal activities at 60ºC. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50ºC.


O fungo filamentoso Aspergillus caespitosus foi um bom produtor de invertases intracelular e extracelular em fermentação submersa (FSbm) ou em estado sólido (FES), usando resíduos agroindustriais como fonte de carbono, sendo que para ambas as condições de cultivo, a maior produtividade foi obtida empregandose farelo de trigo. A produção da forma extracelular em FES mantido a 30ºC, por 72 horas, foi aumentada usandose solução de sais SR (1:1, m/v) para umidificar o substrato, sendo aproximadamente 5,5 vezes maior se comparada a FSbm (Meio Khanna) com a mesma fonte de carbono. Entretanto, a mistura de farelo de trigo e farinha de aveia em FES levou a um aumento de 2,2 vezes na produção enzimática se comparada ao uso isolado do farelo de trigo. A produção enzimática, em ambas as condições de cultivo, foi afetada pela adição suplementar de fontes de nitrogênio e fosfato. A adição de glicose em FSbm e em FES promoveu a diminuição da enzima extracelular, mas favoreceu um acúmulo intracelular de 35 vezes maior. A temperatura ótima de atividade para as invertases produzidas em FES e em FSbm foi de 50ºC e 60ºC, respectivamente, sendo estáveis a 50ºC por mais de 60 minutos. Todas as formas enzimáticas apresentaram atividade máxima em uma faixa de pH de 4.0-6.0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA