Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 1885-1902, 2021.
Artigo em Inglês | WPRIM | ID: wpr-888840

RESUMO

Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1) is significantly hindering effective cancer chemotherapy. However, currently, no ABCB1-inhibitory drugs have been approved to treat MDR cancer clinically, mainly due to the inhibitor specificity, toxicity, and drug interactions. Here, we reported that three polyoxypregnanes (POPs) as the most abundant constituents of

2.
Acta Pharmaceutica Sinica B ; (6): 516-525, 2019.
Artigo em Inglês | WPRIM | ID: wpr-774971

RESUMO

Secalonic acid D (SAD) could inhibit cell growth in not only sensitive cells but also multidrug resistant (MDR) cells. However, the molecular mechanisms need to be elucidated. Here, we identified that SAD possessed potent cytotoxicity in 3 pairs of MDR and their parental sensitive cells including S1-MI-80 and S1, H460/MX20 and H460, MCF-7/ADR and MCF-7 cells. Furthermore, SAD induced cell G2/M phase arrest the downregulation of cyclin B1 and the increase of CDC2 phosphorylation. Importantly, JNK pathway upregulated the expression of c-Jun in protein level and increased c-Jun phosphorylation induced by SAD, which was linked to cell apoptosis c-Jun/Src/STAT3 pathway. To investigate the mechanisms of upregulation of c-Jun protein by SAD, the mRNA expression level and degradation of c-Jun were examined. We found that SAD did not alter the mRNA level of c-Jun but inhibited its proteasome-dependent degradation. Taken together, these results implicate that SAD induces cancer cell death through c-Jun/Src/STAT3 signaling axis by inhibiting the proteasome-dependent degradation of c-Jun in both sensitive cells and ATP-binding cassette transporter sub-family G member 2 (ABCG2)-mediated MDR cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA