Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Protein & Cell ; (12): 520-544, 2021.
Artigo em Inglês | WPRIM | ID: wpr-888711

RESUMO

Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases. Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins. Here, we summarized membrane lipid composition, and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective. In particular, we focused on three important membrane remodeling processes in autophagy, lipid transfer for phagophore elongation, membrane scission for phagophore closure, and autophagosome-lysosome membrane fusion. We discussed the significance of the discoveries in this field and possible avenues to follow for future studies. Finally, we summarized the membrane-associated biochemical techniques and assays used to study membrane properties, with a discussion of their applications in autophagy.

2.
Experimental & Molecular Medicine ; : 73-80, 2012.
Artigo em Inglês | WPRIM | ID: wpr-93423

RESUMO

Autophagy is a self-degradation system of cellular components through an autophagosomal-lysosomal pathway. Over the last 15 yr, yeast genetic screens led to the identification of a number of genes involved in the autophagic pathway. Most of these autophagy genes are present in higher eukaryotes and regulate autophagy process for cell survival and homeostasis. Significant progress has recently been made to better understand the molecular mechanisms of the autophagy machinery. Especially, autophagy process, including the regulation of autophagy induction through mTOR and the nucleation and elongation in autophagosome formation through class III phosphatidylinositol 3-kinase complex and ubiquitin-like conjugation systems, became evident. While many unanswered questions remain to be answered, here, we summarize the recent process of autophagy with emphasis on molecules and their protein complexes along with advanced molecular mechanisms that regulate the autophagy machinery.


Assuntos
Humanos , Autofagia/genética , Proteínas de Transporte/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA