Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Int. j. morphol ; 34(2): 770-774, June 2016. ilus
Artigo em Inglês | LILACS | ID: lil-787067

RESUMO

With the purpose of carrying out a diagnosis of the different pathologies that affect the salmon fry stage (Salmo salar) and analyze the regeneration phases of the organizational centers and subjacent tissue in case of an amputation, we realized a study that allowed identifying the temporary and spatial location of the Sonic Hedgehog (Shh) morphogen in hatched fry stage. Fifteen salmon fry (Salmo salar) were used. They were anesthetized with 5 % benzocaine (BZ-20®, Veterquímica), fixed in 10 % buffered formalin, and embedded in paraffin, Shh polyclonal antibody (Santa Cruz H-160, rabbit) was used diluted at 1/100. They were subsequently rinsed in PBS-1 % Triton and incubated with anti-rabbit conjugated polymer antibody and HRP for 10-15 min. The development was done with DAB (Vector) for 1-5 min. The negative control was incubated without primary antibody. As an internal positive control the notochord was considered. Serial sagittal sections were analyzed consigning tissues and organs marked positively and were described morphologically. The objective of recognizing the spatial and temporal location of Shh was achieved. The notochord, spinal cord neurons and ganglia, the basal layer of the skin and also the lepidotriquias escleroblastos were positively identified for Shh. Finally positivity was also observed in the intestine and renal tubules. The heterogeneity observed in the location of the Shh morphogen suggests its potential use as a marker of regulatory centers in Salmo salar, and a potential advantage in the diagnosis of malformations of salmon fry stage, in addition to a better understanding of tissue regeneration.


Con el fin de llevar a cabo un diagnóstico de las diferentes patologías que afectan a la etapa de alevín de salmón (Salmo salar) y analizar las fases de regeneración de los centros de organización y el tejido subyacente en caso de una amputación, se realizó un estudio que permitió identificar la ubicación temporal y espacial del morfógeno Sonic hedgehog (Shh) en la etapa de alevines eclosionados. Se utilizaron quince alevines de salmón (Salmo salar). Fueron anestesiados con benzocaína al 5% (BZ-20®, Veterquímica), se fijaron en formalina tamponada al 10%, e incluidos en paraplast. Se utilizó Shh anticuerpo policlonal (Santa Cruz H-160, conejo) dilución 1/100. Se enjuagaron posteriormente en PBS-1% Triton y se incubaron con anticuerpo conjugado con polímero anti-conejo y HRP durante 10-15 minutos. Se utilizó como sustrato DAB (Vector) durante 1-5 minutos. El control negativo se incubó sin anticuerpo primario. Como un control positivo interno se consideró la notocorda. Se analizaron secciones sagitales en serie consignando los tejidos y órganos marcados positivamente y se describieron morfológicamente. Se logró el objetivo de reconocer la localización espacial y temporal de Shh. La notocorda, las neuronas de la médula espinal y los ganglios, la capa basal de la piel y también los escleroblastos de las lepidotriquias fueron identificados positivamente para Shh. También se observó positivo el intestino y los túbulos renales. La heterogeneidad observada en la ubicación del morfógeno Shh sugiere su uso potencial como un marcador de los centros de regulación en Salmo salar, y una ventaja potencial en el diagnóstico de las malformaciones de la etapa de alevines de salmón, además de una mejor comprensión de la regeneración de tejidos.


Assuntos
Animais , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Proteínas Hedgehog , Salmo salar , Imuno-Histoquímica
2.
Int. j. morphol ; 33(2): 514-521, jun. 2015. ilus
Artigo em Espanhol | LILACS | ID: lil-755503

RESUMO

Las patologías y traumas de la aleta caudal afectan la natación, dificultan la alimentación y la eficiencia de escape de los peces, además aumentan la susceptibilidad a las infecciones bacterianas y fúngicas. Los salmones adultos pueden regenerar rápida y completamente su aleta si esta es amputada. Sin embargo, se han reportado en el sur de Chile, alevines que expresan defectos anatómicos en la aleta caudal asociados a un alto índice de mortalidad donde no ocurre regeneración. Existen múltiples estudios sobre la aleta caudal de peces adultos pero esta descripción no concuerda con la morfología de la fase de alevín. Nuestro objetivo es describir la anatomía e histología de la aleta caudal del salmón de 15 mm, 30 mm y 60 mm para facilitar el diagnóstico de las patologías tempranas de la aleta caudal. Se trabajó con 60 salmones divididos en tres grupos de 20 en etapas de 15, 30 y 60 mm. Diez salmones de cada grupo fueron procesados con técnicas anatómicas de Hanken & Wassersug . Otros 10 alevines de cada grupo fueron procesados mediante técnicas H&E/azul de Alcian pH 2,5: para glicosaminoglicanos y técnica Histoquímica Picrosirius de Junqueira para colágeno I y III. Al momento de la eclosión de los peces (grupo 1) la aleta caudal no tiene su forma definitiva pero ha iniciado la formación de lepidotriquias. En el grupo 2, la aleta caudal comprende entre 19-20 lepidotriquias y se constituyen dos lóbulos uno dorsal y otro ventral, ambos bajo la notocorda. Los rayos de cada lóbulo crecen más rápido que los rayos que se encuentran entre los lóbulos y se forma un surco entre ellos. En el grupo 3 se observa claramente la aleta bilobulada, se mantienen 19 lepidotriquias que ahora están en proceso de calcificación. Cada lepidotriquia crece distalmente mediante la formación de articulaciones y segmentos. En el grupo 2 se consignó un promedio de 4­5 articulaciones por lepidotriquia y en el grupo 3 han aumentado a 6­10 articulaciones. Esta descripción de la aleta del alevín normal facilita el diagnóstico de la aleta deformada y aporta conocimientos para comparar el desarrollo ontogenético con las fases de la regeneración después de la amputación de la aleta caudal.


Caudal fin pathologies and traumas can affect swimming, impede food and exhaust efficiency, and also increase susceptibility to bacterial and fungal infections. Adult salmon can regenerate their fin quickly and completely if it is amputated. However, yolk sac fry expressing anatomical defects in the caudal fin have been reported in southern Chile and are associated to a high mortality rate where regeneration does not occur. There are many studies on adult salmon but this description does not match the morphology of the juvenile phase. We describe the anatomy and histology of the caudal fin in salmon 15mm, 30 mm and 60 mm to facilitate the early diagnosis of diseases of the caudal fin. We worked with 60 salmon divided into three groups of 20 in steps of 15, 30 and 60 mm. 10 salmon from each group were processed with Hanken & Wassersug anatomical techniques. Another 10 fry from each group were processed using H&E/Alcian blue pH 2.5 techniques: for glycosaminoglycans and technical histochemistry Picrosirius Junqueira for collagen I and III. Upon hatching of fish (group 1) the caudal fin has no definitive form but has commenced training ray or lepidotriquias. In group 2, the caudal fin comprises from 19 to 20 lepidotriquias and two lobes one dorsal and one ventral, both are constituted under the notochord. Each lobe ray grows faster than the rays that lie between the lobes and a groove is formed between them. In group 3clearly shows the bilobed flap, 19 lepidotriquias that are now in the process of calcification are maintained. Each lepidotriquia grows distally by forming joints and segments. In group 2 an average of 4­5 lepidotriquia joints were recorded and in group 3 there was an increase at 6­10 joints. This description of normal fry flap facilitates comparative study of the deformed fin.


Assuntos
Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Salmo salar/anatomia & histologia
3.
Int. j. morphol ; 33(2): 788-793, jun. 2015. ilus
Artigo em Espanhol | LILACS | ID: lil-755544

RESUMO

La retina de peces teleósteos como pez cebra, se ha transformado en un importante modelo para el estudio de la plasticidad neuronal y la neurogénesis. Se ha demostrado además que la retina experimenta cambios ontogenéticos para adaptarse a distintos medios ambientes durante su vida. Este estudio tiene como objetivo describir el desarrollo ontogenético de la retina del alevín de salmón desde la eclosión hasta la fase de juvenil. Se trabajó con 30 salmones divididos en tres grupos de 10. Grupo I: recién eclosionados, con saco vitelino y 18 mm de longitud. Grupo II: sin saco vitelino y 30 mm de longitud. Grupo III: 100 mm de longitud. Cinco alevinesde cada grupo fueron procesados según el protocolo de Hanken & Wassersug para medir los diámetros dorsoventral y nasal-temporal utilizando el cartílago que protege al globo ocular. Los restantes cinco ejemplares fueron seccionados con micrótomo Microm en forma seriada (5 µm) y procesados con técnica H&E/Azul de Alcián. Se midieron las capas de la retina en un microscopio óptico Zeiss, con cámara Powershot incorporada y con un software Image Tool 3.0. El Grupo 1 presentó grandes ojos pigmentados, con aspecto de copa óptica embrionaria, la retina está estratificada en capas. La Capa Nuclear Interna (CNI) mide 62±10 µm y la capa plexiforme interna (CPI) 10±2 µm. El Grupo 2 presenta cambios en el espesor de ellas. La CNI disminuye su espesor a 45±8 µm y la Plexiforme aumenta a 25±5 µm. En los peces juveniles del Grupo 3, la CNI alcanza el espesor mínimo (15±3 µm), por el contrario, la capa Plexiforme interna aumenta su espesor hasta alcanzar (70±10 µm). En los tres grupos estudiados observamos en la periferia de la retina una zona proliferativa germinativa, que corresponde a un remanente del neuroepitelio embrionario, responsable del crecimiento continuado de la retina. La retina de los salmones puede ser también un importante modelo para el estudio de la ontogenia, la plasticidad neuronal y la neurogénesis. Esta neurogénesis en la retina de peces facilita la reordenación celular a lo largo de la ontogenia, lo que potencialmente permite la optimización del sistema visual a los cambios en las demandas visuales. Este estudio puede ser de utilidad para facilitar el diagnóstico en las patologías de ojo en salmonicultura y también puede contribuir a conocer mejor la regeneración de tejidos. Por otro lado, con estudios posteriores, la neurogénesis de la retina de peces podría extrapolarse al tratamiento de enfermedades humanas con daño a nivel retineal, tales como glaucoma, desprendimiento de retina y retinopatía diabética.


The retina of teleost fish zebrafish, has become an important model for studying neuronal plasticity and neurogenesis. It was further shown that the retina undergoes ontogenetic changes to adapt to different environments during their lifetime. This study aims to describe the ontogenetic development of the retina of juvenile salmon from hatching to the juvenile stage. We worked with 30 salmon divided into three groups of 10. Group I: newly hatched with yolk sac and 18 mm in length. Group II: without yolk sac and 30 mm in length. Group III: 100 mm long. Five fry each group were processed according to the protocol of Hanken & Wassersug to measure dorsoventral and nasal-temporal diameters using the cartilage that protects the eyeball. The remaining five specimens were sectioned with a microtome Microm serially (5 µm) and processed with technical H-E / Alcian blue. The layers of the retina were measured on a Zeiss optical microscope with camera Powershot built and with Image Tool 3.0 software. Group 1 showed large pigmented eyes, looking embryonic optic cup, the retina is stratified in layers. The inner nuclear layer (CNI) measured 62±10 microns and the inner plexiform layer (CPI) 10±2 µm. Group 2 presents changes in the thickness of them. The CNI decreases in thickness to 45±8 µm and the plexiform increased to 25±5 µm. In juvenile fish of group 3, the CNI reaches the minimum thickness (15±3 µm), by contrast, the inner plexiform layer thickness increases up to (70±10 µm). In the three groups observed in the periphery of the retina one proliferative germinative zone, which corresponds to a remnant of the embryonic neural epithelium responsible for the continued growth of the retina. The retina of the salmon can also be an important model for the study of ontogeny, neuronal plasticity and neurogenesis. This retinal neurogenesis fish rearrangement facilitates cell along ontogeny, potentially allowing optimization of the visual system to changes in the visual demands. This study may be useful to help diagnose pathologies in eye salmon and can also contribute to better understand tissue regeneration. On the other hand, with later studies, fish's retinal neurogenesis could be extrapolated to the treatment of human retinal diseases, such us glaucoma, retinal detachment o diabetic retinopathy.


Assuntos
Animais , Retina/anatomia & histologia , Retina/crescimento & desenvolvimento , Salmo salar/anatomia & histologia
4.
Int. j. morphol ; 31(1): 172-176, mar. 2013. ilus
Artigo em Espanhol | LILACS | ID: lil-676154

RESUMO

En este estudio se describe el desarrollo post-eclosional de la médula espinal del salmón. Salmo salar. Se utilizaron 200 alevines recién eclosionados, los que fueron cultivados en el Centro de Estudios Acuícolas de la Universidad de Chile. Las condiciones ambientales de cultivo fueron de un 90% de saturación de oxigeno. La temperatura ambiental se mantuvo en 7°C. A los días 1, 3, 5 7 ds post-eclosión, 50 alevines por grupo etario fueron anestesiados y sacrificados por exposición a 5% Benzocaina diluida en agua (Kalmagin 20®, Farquímica). Posteriormente fueron fijados en formalina tamponada al 10% y procesados mediante técnica histológica. Para cada alevín se tomaron a nivel de la aleta dorsal un total de 40 cortes coronales seriados de 5µm de grosor, los que fueron procesados de acuerdo a las técnicas Cresil violeta. La cuantificación neuronal se realizó sobre imágenes microscópicas mediante el método del disector. Los resultados obtenidos se sometieron a una prueba de Coeficiente de Kurtosis con el propósito de analizar el grado de concentración que presentan los valores alrededor de la zona central de la distribución. La médula espinal de los alevines de 1 día es poco diferenciada. En los alevines de 3, 5 y 7 días se diferencian gradualmente las neuronas de la sustancia gris, pero no presenta la distribución característica en forma de "Y" invertida del salmón adulto. El número de neuronas aumenta desde 67+1.7 en el día 1 hasta 88+2.1 en el día 7. Esta observación se puede relacionar con la ausencia de movimientos natatorios de los peces durante los primeros días ya que estos caen sobre la gravilla al fondo de las bateas. Un factor determinante en la adquisición de la morfología de la médula espinal es el inicio de los movimientos natatorios, lo que ocurre aproximadamente al quinto día post-eclosión. La actividad motriz activa permite que las neuronas de la médula espinal sean reclutadas y se formen y activen las redes neurales, permaneciendo finalmente los circuitos más eficientes. El aumento del número de neuronas se puede explicar por neurogénesis post-eclosión, como ocurre en otros teleósteos. Este estudio indica que al momento de la eclosión, el sistema nervioso está muy indiferenciando, y que durante las primeras semanas de vida del alevín ocurre la diferenciación de las neuronas y neurogénesis. Este conocimiento es muy importante debido a que en las pisciculturas se cuidan las ovas, y se descuida la fase del alevinaje en la creencia que los tejidos están constituidos.


We describe the development of the spinal cord during the post eclosion period of the salmon (Salmo salar).We used a total of 200 newly hatched fry grown in the Aquaculture Research Center of the Universidad de Chile. Environmental conditions were of 90% oxygen saturation. Ambient temperature was maintained at 7° C. At days, 1, 3, 5 and 7, post-hatching, 50 fry were anesthetized and sacrificed by exposure to 5% benzocaine diluted in water, (Kalmagin 20 ®, Farquímica). They were then fixed in 10% buffered formalin and processed by histological technique. For each juvenile a total of 40 serial coronal sections of 5µm were taken at the level of the dorsal fin, which were then processed according to cresyl violet techniques.Neuronal quantitation was performed on microscopic images by dissector method. The results obtained were subjected to coefficient Kurtosis test in order to analyze the degree of concentration of values around the central distribution area.The spinal cord of the one-day fry is poorly differentiated. In fry of 3, 5 and 7 days neurons are gradually differentiated, they do not however present the characteristic neuronal distribution inverted "Y" of the adult salmon. The number of neurons increases from 67±1.7 on day one, to 88±2.1 on day 7.This observation may be related to the absence of fish swimming movements during days one and three as these fall on the gravel at the bottom of the trays. A determining factor in the acquisition of the morphology of the spinal cord is the start of swimming movements, which occur at around the fifth day post-hatching.Active motor activity allows spinal cord neurons to be recruited and form to activate neural networks, to remain finally in the most efficient circuits. Increasing the number of neurons can be explained by post-hatching neurogenesis as in other teleosts.This study indicates that at the time of hatching, the nervous system is very undifferentiated and that neuron differentiation and neurogenesis occur during the first weeks of life. This knowledge is very important as fish farms take care of eggs, neglecting the nursery stage in the belief that tissues are formed.


Assuntos
Animais , Salmão , Medula Espinal/crescimento & desenvolvimento , Salmo salar , Neurogênese , Sistema Nervoso/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA