Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 1370-1382, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928064

RESUMO

This study explored the anticoagulant material basis and mechanism of Trichosanthis Semen and its shell and kernel based on spectrum-effect relationship-integrated molecular docking. High performance liquid chromatography(HPLC) fingerprints of Trichosanthis Semen and its shell and kernel were established. Prothrombin time(PT) and activated partial thromboplastin time(APTT) in mice in the low-and high-dose(5, 30 g·kg~(-1), respectively) Trichosanthis Semen, the shell, and kernel groups were determined as the coagulation markers. The spectrum-effect relationship and anticoagulant material basis of Trichosanthis Semen and its shell and kernel were analyzed with mean value calculation method of Deng's correlation degree(MATLAB) and the common effective component cluster was obtained. Then the common targets of the component cluster and coagulation were retrieved from TCMSP, Swiss-TargetPrediction, GenCLiP3, GeneCards, and DAVID, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. The main anticoagulant molecular mechanism of the component cluster was verified by SYBYL-X 2.1.1. The spectrum-effect relationship of Trichosanthis Semen and its shell and kernel was in positive correlation with the dosage. The contribution of each component to anticoagulation was not the same, suggesting that the material basis for anticoagulation was different, but they have common effective components(i.e. common material basis), such as adenine(peak 3), uracil(peak 4), hypoxanthine(peak 6), xanthine(peak 9), and adenosine(peak 11). Network pharmacology showed that these components can act on multiple target proteins such as NOS3, KDR, and PTGS2, and exert anticoagulant effect through multiple pathways such as VEGF signaling pathway. They involved the biological functions such as proteolysis, cell component such as cytosol, and molecular functions. The results of molecular docking showed that the binding free energy of these components with NOS3(PDB ID: 1 D0 C), KDR(PDB ID: 5 AMN), and PTGS2(PDB ID: 4 COX) was ≤-5 kJ·mol~(-1), and the docking conformations were stable. Spectrum-effect relationship-integrated molecular docking can be used for the optimization, virtual screening, and verification of complex chemical and biological information of Chinese medicine. Trichosanthis Semen and its shell and kernel have the common material basis for anticoagulation and they exert the anticoagulant through multiple targets and pathways.


Assuntos
Animais , Camundongos , Anticoagulantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Ontologia Genética , Simulação de Acoplamento Molecular , Sêmen
2.
China Journal of Chinese Materia Medica ; (24): 5114-5117, 2019.
Artigo em Chinês | WPRIM | ID: wpr-1008372

RESUMO

Leech has a good anticoagulant activity and is one of the raw materials for treatment of many cardiovascular and cerebrovascular diseases. This study was based on in vitro anticoagulant experiments( APTT and PT) to investigate the effects of lead contamination on the anticoagulant effect of leech. At present,the Hirudo circulating in the market are dominated by Whitmania pigra,therefore Wh. pigra were cultivated under a different lead pollution for 50 days. Then,the effects of Wh. pigra extract,extracting from different cultivating environment,on activated partial thrombin time( APTT) and prothrombin time( PT) were determined by automatic coagulation instrument. The results showed that the Wh. pigra extract significantly prolonged the APTT compared with the saline group.The APTT of the lead-high residual Wh. pigra was shorter than that of the blank Wh. pigra. The Wh. pigra extracts from different treatment groups had little effect on PT. The results showed that the lead residue in the Wh. pigra increased with the increase of lead in the cultured soil,the lead residual of the Pb-H group was( 10. 66±2. 79) mg·kg~(-1),which exceeded the lead limit specified in the 2015 edition of the Chinese Pharmacopoeia. The results indicated that growth environment pollution is one of the important factors causing excessive lead in Wh. pigra. Lead pollution will reduce the anticoagulant effect of Wh. pigra and affect its clinical efficacy.


Assuntos
Animais , Anticoagulantes , Produtos Biológicos/farmacologia , Coagulação Sanguínea , Poluição Ambiental , Chumbo/toxicidade , Sanguessugas/efeitos dos fármacos , Tempo de Protrombina , Tempo de Trombina
3.
China Journal of Chinese Materia Medica ; (24): 982-988, 2017.
Artigo em Chinês | WPRIM | ID: wpr-275431

RESUMO

To explore the effect of Shuxuetong injection on the pharmacodynamics and pharmacokinetics of warfarin in rats, and to provide reference for rational drug use. In studies on the single dose of warfarin, Wistar rats were randomly divided into four groups: blank control group(group A), Shuxuetong injection group(group B), warfarin control group(group C), and warfarin+Shuxuetong injection group(group D). In studies on the steady state of warfarin, Wistar rats were randomly divided into warfarin control group(group E) and warfarin+Shuxuetong injection group(group F). To investigate the pharmacodynamic effect of Shuxuetong injection on warfarin, prothrombin time(PT) and activated partial thromboplastin time(APTT) were measured by coagulation analyzer, and international normalized ratio(INR) was calculated. To investigate the pharmacokinetic effect of Shuxuetong injection on warfarin, the blood concentrations of S-warfarin and R-warfarin were determined by UPLC-MS/MS combined with technology of chiral chromatographic column, and the related pharmacokinetic parameters were calculated accordingly. The results on the single dose of warfarin showed that Shuxuetong injection markedly increased PT, INR(P<0.01), and APTT(P<0.05). Meanwhile, when Shuxuetong injection was co-administrated with warfarin, it significantly increased PT, INR(P<0.01), and APTT(P<0.05) as compared with warfarin control group. In addition, increased pharmacokinetic parameters including Cmax, AUC0-t and AUC0-∞, prolonged t1/2, and decreased CL/F were observed for S-warfarin and R-warfarin. The results of the steady state of warfarin suggested that Shuxuetong injection significantly increased PT and INR of warfarin(P<0.01), and elevated the plasma concentrations of S-warfarin and R-warfarin when co-administrated with warfarin. These findings indicated that Shuxuetong injection had anticoagulant effect, and would produce pharmacodynamics synergistic action when it was co-administrated with warfarin. Shuxuetong injection also decelerated the metabolism of warfarin, and resulted in pharmacokinetics interaction. Therefore, Shuxuetong injection could significantly increase anticoagulant effect of warfarin, indicating that the combination use of these two drugs should be refrained in order to avoid the risk of bleeding in clinical application. If they need to be used in combination, special attention should be paid to ensure the safety of patients.

4.
Clinical Nutrition Research ; : 235-241, 2015.
Artigo em Inglês | WPRIM | ID: wpr-71717

RESUMO

This study aimed to explore the correlation between usual vitamin K intake and response to anticoagulant therapy among patients under warfarin therapy. We conducted a retrospective survey of patients (n = 50) on continuous warfarin therapy. Clinical information and laboratory parameters were sourced from medical records. Anticoagulant effect was evaluated by using the percent time in therapeutic range (TTR) and the coefficient of variation (CV) of International normalized ratio (INR). Dietary vitamin K intake was assessed using a semi-quantitative food frequency questionnaire that has been developed for the purpose of assessing dietary intake of vitamin K. A total of 50 patients aged between 21 and 87 years were included in the study. The mean vitamin K intake was 262.8 +/- 165.2 microg/day. Study subjects were divided into tertiles according to their usual vitamin K intake. The proportion of men was significantly higher in second and third tertile than first tertile (p = 0.028). The mean percent TTR was 38.4 +/- 28.4% and CV of INR was 31.8 +/- 11.8%. Long-term warfarin therapy group (> or = 3 years) had a higher percentage of TTR as compared to the control group ( 0.05). In conclusion, no significant association was observed between usual vitamin K intake and anticoagulant effects. Further studies are required to consider inter-individual variability of vitamin K intake. Development of assessment tools to measure inter-individual variability of vitamin K intake might be helpful.


Assuntos
Humanos , Masculino , Coeficiente Internacional Normatizado , Prontuários Médicos , Estudos Retrospectivos , Vitamina K , Vitaminas , Varfarina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA